

Visualization for Social
Data Science

Visualization for Social Data Science provides end-to-end skills in visual data analysis.
The book demonstrates how data graphics and modern statistics can be used in tandem
to process, explore, model and communicate data-driven social science. It is packed with
detailed data analysis examples, pushing you to do visual data analysis. As well as intro-
ducing, and demonstrating with code, a wide range of data visualizations for exploring
patterns in data, Visualization for Social Data Science shows how models can be integrated
with graphics to emphasise important structure and de-emphasise spurious structure and
the role of data graphics in scientific communication -- in building trust and integrity.
Many of the book’s influences are from data journalism, as well as information visualiza-
tion and cartography.

Each chapter introduces statistical and graphical ideas for analysis, underpinned by real
social science datasets. Those ideas are then implemented via principled, step-by-step,
workflows in the programming environment R. Key features include:

» Extensive real-world data sets and data analysis scenarios in Geography, Public Health,
Transportation, Political Science;

+ Code examples fully-integrated into main text, with code that builds in complexity and
sophistication;

» Quarto template files for each chapter to support literate programming practices;

» Functional programming examples, using tidyverse, for generating empirical statistics
(bootstrap resamples, permutation tests) and working programmatically over model
outputs;

+ Unusual but important programming tricks for generating sophisticated data graphics
such as network visualizations, dot-density maps, OD maps, glyphmaps, icon arrays,
hypothetical outcome plots and graphical line-ups plots. Every data graphic in the book
is implemented via ggplot2.

« Chapters on uncertainty visualization and data storytelling that are uniquely accompa-
nied with detailed, worked examples.

Roger Beecham is Associate Professor of Visual Data Science at University of Leeds
School of Geography and Director of Research & Innovation at Leeds Institute for Data
Analytics. He has published award-winning methodological work in data visualization,
statistical practice and applied social science. He has taught visual data analysis for many
years — to undergraduate and postgraduate students, experienced academics and data
analysis professionals.

Chapman & Hall/CRC
Statistics in the Social and Behavioral Sciences Series

Series Editors
Jeft Gill, Steven Heeringa, Wim J. van der Linden, and Tom Snijders

Recently Published Titles

Applied Regularization Methods for the Social Sciences
Holmes Finch

An Introduction to the Rasch Model with Examples in R
Rudolf Debelak, Carolin Stobl, and Matthew D. Zeigenfuse

Regression Analysis in R: A Comprehensive View for the Social Sciences
Jocelyn H. Bolin

Intensive Longitudinal Analysis of Human Processes
Kathleen M. Gates, Sy-Min Chow, and Peter C. M. Molenaar

Applied Regression Modeling: Bayesian and Frequentist Analysis of Categorical and
Limited Response Variables with R and Stan
Jun Xu

The Psychometrics of Standard Setting: Connecting Policy and Test Scores
Mark Reckase

Crime Mapping and Spatial Data Analysis using R
Juanjo Medina and Reka Solymosi

Computational Aspects of Psychometric Methods: With R
Patricia Martinkova and Adéla Hladka

Principles of Psychological Assessment
With Applied Examples in R
Isaac T. Petersen

Multilevel Modeling Using R, Third Edition
W. Holmes Finch, Jocelyn E. Bolin, and Ken Kelley

Polling, Prediction, and Testing, Second Edition
Ole J. Forsberg

Generalized Kernel Equating with Applications in R
Marie Wiberg, Jorge Gonzalez and Alina A. von Davier

Applied Survey Data Analysis, Third Edition
Brady T. West, Steven G. Heeringa, and Patricia A. Berglund

Visualization for Social Data Science
Roger Beecham

Introduction to Bayesian Data Analysis for Cognitive Science
Bruno Nicenboim, Daniel J. Schad and Shravan Vasishth

For more information about this series, please visit: https://www.routledge.com/Chap-
man--HallCRC-Statistics-in-the-Social-and-Behavioral-Sciences/book-series/ CHST-
SOBESCI

https://www.routledge.com/Chapman--HallCRC-Statistics-in-the-Social-and-Behavioral-Sciences/book-series/CHSTSOBESCI
https://www.routledge.com/Chapman--HallCRC-Statistics-in-the-Social-and-Behavioral-Sciences/book-series/CHSTSOBESCI
https://www.routledge.com/Chapman--HallCRC-Statistics-in-the-Social-and-Behavioral-Sciences/book-series/CHSTSOBESCI

Visualization for Social
Data Science

Roger Beecham

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

https://www.crcpress.com

Designed cover image: Roger Beecham

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC
© 2026 Roger Beecham

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-27437-9 (hbk)
ISBN: 978-1-032-25971-0 (pbk)
ISBN: 978-1-003-29276-0 (ebk)

DOI: 10.1201/9781003292760

Typeset in Latin Modern font
by KnowledgeWorks Global Ltd.

Publisher’s Note: This book has been prepared from camera-ready copy provided by the
author.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003292760

Table of cont

Preface

ents

Structure, content and outcomes
Audience and assumed background L.
Omissions and additions

Acknowledgments . . .

1 Introduction

1.1 Introduction
1.2 Concepts
1.2.1 Why visualization?
1.2.2 What type of visualization?
1.2.3 How we do visualization design and analysis
1.3 Techniques
1.3.1 Rand RStudio
1.3.2 Compute in the console
1.3.3 Install some packages
1.3.4 Experiment with Quarto.
1.3.5 R Scripts
1.3.6 Create an RStudio Project
1.4 Conclusions

1.5 Further Reading

2 Data Fundamentals

2.1 Imtroduction
2.2 Concepts
2.2.1 Dataframes. o
2.2.2 Typesofvariable
2.2.3 Types of observation
224 Tidydata o
2.3 Techniques
2.3.1 Import.
2.3.2 Manipulate
233 THAY . . o o
2.4 Conclusions

2.5 Further Reading

ix
ix

Xi
Xi

19
19
20
20
20
21
22
22
23
25
36
40
40

vi Contents

3 Visualization Fundamentals
3.1 Introduction.
3.2 Concepts
3.2.1 Effective data graphics
3.2.2 Grammar of Graphics
3.2.3 Marks and visual channels
3.2.4 Evaluating designs L
3.2.5 Symbolisation oo
326 Colour
3.3 Techniques
331 Import.
3.3.2 Summarise
3.3.3 Plot distributions 0L
3.3.4 Plot ranks/magnitudes L.
3.3.5 Plot relationships 0.
3.3.6 Plot geography 0.
3.4 Conclusions L
3.5 Further Reading
4 Exploratory Data Analysis
4.1 Introduction Lo
4.2 ConceptS
4.2.1 Exploratory data analysis and statistical graphics. . . .
4.2.2 Plots for continuous variables
4.2.3 Plots for categorical variables
4.2.4 Strategies for supporting comparison
4.3 Techniques
4.3.1 Import.
4.3.2 Sample
4.3.3 Abstract and relate
4.3.4 Model and residual: Pass 1
4.3.5 Model and residual: Pass 2
4.4 Conclusions e
4.5 Further Reading
5 Geographic Networks
5.1 Introduction
5.2 Concepts
5.2.1 Nodesummary
5.2.2 Node-link representations
5.2.3 Origin-Destination matrices
5.2.4 Origin-Destination maps
5.3 Techniques
5.3.1 Import.

5.3.2 Gridmap layouto

Contents vii

8

5.3.3 Analysing over nodes oL 109
5.3.4 Analysingoveredges 114
54 Conclusions 117
5.5 Further Reading 119
Models 121
6.1 Introduction 121
6.2 Concepts 122
6.2.1 Quantifying and exploring variation 122
6.2.2 Quantifying and exploring co-variation 124
6.2.3 Modelling for co-variation 126
6.2.4 Evaluating model bias 128
6.2.5 Geographic context as grouped nuisance term 129
6.2.6 Geographic context as grouped effects 130
6.2.7 Estimate volatility and alternative modelling approaches 132
6.3 Techniques 133
6.3.1 Import, transform, explore 133
6.3.2 Model tidily 135
6.3.3 Plot models tidily 139
6.3.4 Extend model termso 139
6.3.5 Evaluate models with lineups 142
6.4 Conclusion 145
6.5 Further Reading 146
Uncertainty 147
7.1 Introduction. 147
7.2 Concepts 148
7.2.1 Uncertainty visualization 148
7.2.2 Frequency framing 150
7.2.3 Quantifying uncertainty in frequencies 152
7.2.4 Visualizing uncertainty in frequencies 154
7.2.5 Multiple comparisons 0L 155
7.3 Techniques 158
7.3.1 Import. 158
7.3.2 Ploticonarrays. o 158

7.3.3 Generate bootstrap estimates of parameter uncertainty 161
7.3.4 Plot parameter estimates with uncertainty information . 162

7.3.5 Ensemble plots and hypothetical outcome plots 163
7.4 Conclusions Lo 165
7.5 Further Reading 165
Visual Storytelling 167
8.1 Imtroduction. 167
8.2 Concepts 168

8.2.1 Data-driven storytelling 168

viii

8.2.2 Designed and partial
8.2.3 Intuitive and compelling
8.2.4 Political L.
8.3 Techniques
831 Import.
8.3.2 Plot trajectories

8.3.3 Add labels and annotations

8.3.4 Build custom legend
8.3.5 Compose graphic
8.4 Conclusions
8.5 Further Reading

A Task Answers

A1 From Chapter 2.
Task 1o o o
Task 2o

A2 From Chapter 3.
Task 1o o

Task 3o oo
A.3 From Chapter4.
Task 1
Task 2
A4 From Chapter 5.
Task 1o oo
A5 From Chapter 6

References

Index

Contents

Preface

Social scientists have at their disposal an expanding array of data measur-
ing very many social behaviours. This is undoubtedly a positive. Previously
unmeasurable aspects of human behaviour can now be explored in a large-
scale empirical way, while already measured aspects of behaviour can be
re-evaluated. Such data are nevertheless rarely generated for the sole purpose
of social research, and this fact elevates visual approaches in importance due to
visualization’s emphasis on discovery. When encountering new data for the first
time, data graphics help expose complex structure and multivariate relations,
and in so doing advance an analysis in situations where the questions to be
asked and techniques to be deployed may not be immediately obvious.

Visualization toolkits such as ggplot2, vega-lite and Tableau have been designed
to ease the process of generating data graphics for analysis. There is a compre-
hensive set of texts and resources on visualization design theory, and several
notable how-to primers on visualization practice. However, comparatively few
existing resources demonstrate with real data and real social science scenarios
how and why data graphics should be incorporated in a data analysis, and
ultimately how they can be used to generate and claim knowledge.

This book aims to fill this space. It presents principled workflows, with code,
for using data graphics and statistics in tandem. In doing so it equips readers
with critical design and technical skills needed to analyse and communicate
with a range of datasets in the social sciences.

The book emphasises application. Each chapter introduces concepts for analysis,
with an accompanying technical implementation that uses real-world data
on a range of Public Health, Transportation, Social and Electoral outcomes.
The ambition is that by the end of each chapter, we have a more advanced
knowledge and understanding of the phenomena under investigation.

Structure, content and outcomes

Chapters of the book are divided into Concepts and Techniques. The Concepts
sections cover key literature, ideas and approaches that can be leveraged to
analyse the dataset introduced in the chapter. In the Techniques sections,

ix

X Preface

code examples are provided for implementing those concepts and ideas. Each
chapter starts with a list of Knowledge and Skills outcomes that map to the
Concepts and Techniques. To support the technical elements, chapters have a
corresponding computational notebook file. These files contain pre-prepared
code chunks to be executed. In the early chapters we aim at brevity in the
Concepts sections, offset by slightly more lengthy Techniques sections. As the
book progresses the balance shifts somewhat, with more involved conceptual
discussion and more specialised and abbreviated technical demonstrations.

Readers of the book will learn how to:

e Describe, process and combine social science datasets from a range of
sources.

o Design statistical graphics that expose structure in social science data
and that are underpinned by evidence-backed practice in information
visualization and cartography.

o Use data science and visualization frameworks to produce data analysis
code that is coherent and easily shareable.

e Apply modern statistical and graphical techniques for analysing, represent-
ing and communicating data and model outputs with integrity.

Audience and assumed background

The book is for people analysing societal issues, broadly defined, including
from within Geography, Public Health, Transportation and Political Science.
It is aimed at postgraduate students and researchers, data journalists, analysts
working in public sector and commercial organisations.

All technical examples are implemented using the R programming environment;
so too every data graphic that appears in this book. Some prior knowledge
of the R ecosystem is assumed, and as the chapters progress, more advanced
concepts and coding procedures are introduced. While the book covers many
of the fundamentals of R for working with social science datasets, our ultimate
aim is to demonstrate through example how data graphics can and should be
used in a data analysis. In this way it complements core resources that more
fully cover, from zero-level prior knowledge, these how-to aspects: R for Data
Science (Wickham and Grolemund 2017), Tidymodelling with R (Kuhn and
Silge 2023) and Geocomputation with R (Lovelace, Nowosad, and Muenchow
2019).

Preface xi

Omissions and additions

There are certain aspects of the book that might be surpising to those seasoned
in reading data visualization textbooks. We do not cover interactivity in
data graphics, and there is not a chapter dedicated to geospatial visualization,
though numerous geospatial visualizations (maps) appear throughout to address
particular analysis questions.

The reasons for this are principled as well as pragmatic. The R programming
environment is not well-suited to highly flexible, interactive data graphics.
Even if it were, we would question the need for interaction in many of the
real-world data analysis scenarios covered in this book. The lack of a dedicated
geovisualization chapter will hopefully become clear by the end of Chapter 3.
It is useful to apply the same theory, heuristics and coding ideas to designing
and evaluating maps as one would any other data graphic.

Space in the book is instead dedicated to introspecting into data graphics:
the role of statistics and models for emphasising important structure and
de-emphaising spurious structure, the differing purposes of data graphics at
different analysis stages and the role of data graphics in building trust and
integrity. Many of the book’s influences are from data journalism, as well as
information visualization and cartography.

Acknowledgments

)

You will notice that the book is written in the first person, but with “we/our’
rather than the singular pronoun “I/my”. The reasons for this are partly
stylistic. They also, hopefully, betray that the ideas and work presented in the
book are not entirely my own. In particular “I” would like to thank Jo Wood
and Jason Dykes, whose thinking on visualization design and practice runs
throughout the book; and Robin Lovelace, who helped get things kick-started,
whose technical knowledge is legion and whose critique and encouragement is
always welcome. Thanks also to Lara Spieker from CRC Press and Taylor &
Francis for helping move from an early plan to full production. And finally, as
ever, to the reviewers for providing expert feedback on the book’s structure
and emphasis, and for the more general encouragement and positivity.

https://www.taylorandfrancis.com

1

Introduction

By the end of this chapter you should gain the following knowledge and
practical skills.

Knowledge outcomes

O Appreciate the motivation for this book: why visualization, why R
and Why ggplot2.

O Recognise the characteristics of reproducible research and the role of
RStudio Projects and computational notebooks (Quarto) for curating
data analysis reports.

Skills outcomes

O Open R using the RStudio Integrated Developer Environment (IDE).
[Install and enable R packages and query package documentation.
0 Create R Projects.

0 Read-in external datasets as in-memory data frames.

O Render Quarto files.

1.1 Introduction

This chapter introduces the what, why and how of the book. After defining
Data Science in a way that hopefully resists hyperbole, we demonstrate the
importance of visual approaches in modern data analysis, especially social sci-
ence analysis. We then introduce the key technologies and analysis frameworks
for the book. In the technical component we consolidate any prior knowledge
of the R ecosystem, demonstrate how to organise data science analyses as
RStudio Projects and how to curate data analysis reports as computational
notebooks via Quarto.

2 1 Introduction

1.2 Concepts
1.2.1 Why visualization?

It is now taken for granted that new data, new technology and new ways
of doing science have transformed how we approach the world’s problems.
Evidence for this can be seen in the response to the Covid-19 pandemic. Enter
‘Covid19 github’ into a search and you’ll be confronted with hundreds of code
repositories demonstrating how data related to the pandemic can be collected,
processed and analysed. Data Science (hereafter data science) is a catch-all
term used to capture this shift.

The definition has been somewhat stretched over the years, but data science
has its origins in the work of John Tukey’s The Future of Data Analysis (1962).
Drawing on this, and a survey of more recent work, Donoho (2017) identifies
six key facets that a data science discipline might encompass:

data gathering, preparation and exploration;

data representation and transformation;

computing with data;

data visualization and presentation;

data modelling;

and a more introspective “science about data science”.

SR

Each is covered to varying degrees within the book. Data visualization and
presentation of course gets a special status. Rather than a single and self-
contained facet of data science process — something that happens after data
gathering, preparation and exploration, but before modelling — the book
demonstrates how data visualization is intrinsic to, or at least should inform,
every facet of data science work: to capture complex, multivariate structure
(Chapters 3, 4, 5), provoke critical thinking around data transformation and
modelling (Chapters 4, 5 and 6) and communicate observed patterns with
integrity (Chapters 7 and 8).

This special status is further justified when considering the circumstances under
which Social Data Science (hereafter social data science) projects operate. New
datasets are typically repurposed for social science research for the first time,
contain complex structure and relations that cannot be easily modelled using
conventional statistics and, as a consequence, the types of questions asked and
techniques deployed to answer them — the research design — cannot be easily
specified in advance.

1.2 Concepts 3

Case study: using data visualization for urban mobility analysis

Let’s develop this argument through example. In the early 2010s, several major
cities around the world launched large-scale bikeshare systems. Data harvested
from these systems enable city-wide cycling behaviours to be profiled in new
ways, but they also present challenges. Bikeshare systems describe a particular
category of cycling. The available user data, while spatiotemporally precise
and ‘population-level’; are insufficiently detailed to easily assess how typical of
cyclists are their users. Factors such as motivations, drivers and barriers to
cycling, which especially interest transport researchers and planners, can only
be inferred since they are not measured directly.

Figure 1.1 contains a sample of user data collected via London’s bikeshare
system. The Journeys table describes individual trips made between bikeshare
docking stations; stations, the locations of docking stations; and Members, high-
level details of system users that can be linked to Journeys via a memberIp.
Figure 1.1 also shows statistical summaries that help us guess at how the system
might be used: the hourly and daily profile of trips implying commuter-oriented
usage; the 1D distribution of journey frequencies suggesting short, so-called
‘last mile’ trips; the expected heavy-tail in the rank-size plot confirming a large
share of trips are made between a relatively select set of docking stations.

Figure 1.1: Database schemas and summaries of London bikeshare user data.
The values in these table excerpts are entirely synthetic.

While useful, the summaries and statistical graphics in Figure 1.1 are ab-
stractions. They do not necessarily characterise how users of the bikeshare
system cycle around the city. With the variables available to us, locations and

4 1 Introduction

timestamps describing the start and end of bikeshare trips, we can create
graphics that expose these more synoptic patterns of usage. In Figure 1.2, jour-
neys that occur during the morning weekday peak are encoded using flow-lines
that curve towards their destination. To emphasise the most frequently cycled
journeys, the thickness and transparency of flow-lines is adjusted according
to trip frequency. From this, we get a more direct sense of city-wide cycling
behaviour: a clear commuter function in the morning peak, with trips from
London’s major rail hubs — King’s Cross and Waterloo — connecting central
and City of London.

Figure 1.2: London bikeshare trips in 2018 (c¢. 10m records). Journeys are
filtered on the weekday morning peak.

The point of this example is not to undermine the value of statistical abstrac-
tions. Numeric summaries that simplify patterns are extremely useful and
Statistics has at its disposal an array of tools for helping to guard against
making false claims from datasets. There are, though, certain classes of relation
and context that especially pertain to social phenomena, geographic context
undoubtedly, that cannot be easily captured through numeric summary alone.

1.2 Concepts 5

1.2.2 What type of visualization?

This book is as much about the role of visualization in statistics and data
analysis practice as it is about the mechanics of data visualization. It leans
heavily on real-world data and research questions. Each chapter starts with
concepts for analysis, discussed via a specific dataset from the Political Science,
Urban and Transport Planning and Health domains. Analysis of these data
is then implemented via a techniques section. By the end of each chapter, we
have a more advanced understanding of the phenomena under investigation,
as well as an expanded awareness of visual data analysis practice.

To do this, we must cover a reasonably broad set of data processing and
analysis procedures. As well as developing expertise on the design of data-rich,
visually compelling graphics, some tedious aspects of data processing and
wrangling are required. Additionally, to learn how to make and communicate
claims under uncertainty with data graphics, techniques for estimation and
modelling from Statistics are needed. In short, Donoho (2017)’s six key facets
of a data science discipline:

data gathering, preparation, and exploration (Chapters 2, 3, 4);
data representation and transformation (Chapters 2, 3);
computing with data (Chapter 2, All chapters);

data visualization and presentation (All chapters);

data modelling (Chapters 4, 6, 7);

and the “science about data science” (All chapters).

SRl

Case study: combining data graphics with models in urban mobility
analysis

To demonstrate this more expanded role of visual data analysis, let’s return
to our bikeshare case study. Gender is an important theme in urban cycling
research. High-cycling cities typically have equity in the level of cycling under-
taken by men and women, and so the extent and nature of gender-imbalance
can indicate how amenable to cycling a particular urban environment is. Of all
trips made by members of London’s bikeshare system, 77% are contributed by
men. An obvious follow-up is whether the type and geography of these trips is
distinctive.

If there were no differences in the trips made by men and women, we could
set up a model that expects men to account for 77% of journeys cycled in any
randomly sampled origin-destination (OD) journey pair in the dataset (the
‘global’ proportion of trips contributed by men).

In the rank-size plot below (Figure 1.3), we select out the top 50 most cycled OD
pairs in the dataset and examine the male-female split against this expectation
— the dark line. In only three of those ODs, in bold, do we see a higher than
expected proportion of trips contributed by women. This suggests that the

6 1 Introduction

journeys most popular with men are different from the journeys most popular
with women.

Figure 1.3: London bikeshare trips in 2018 (c. 10m records). Journeys are
filtered on the weekday morning peak.

To consider the spatial context behind these differences, and for a much larger
set of journeys, we update the flow-map graphic this time colouring flow lines
according the direction and extent of deviation from our modelled expectation
(Figure 1.4). The graphic shows stark geographic differences with men very
much overrepresented in bikeshare trips characteristic of commuting (dark
blue) — trips from major rail hubs (Waterloo and King’s Cross) and city
and central London. By contrast women’s travel behaviours are in fact more
geographically diverse and varied: the dark red emphasising OD pairs where
women are overrepresented.

The model in Figure 1.4 is not a particularly sophisticated one. A next step
would be to update it with important conditioning context that likely accounts
for some of the behavioural differences (see Beecham and Wood 2014). The act
of creating a model and encoding the original flow map with individual model
residuals, rather than relying on some global statistic of gender imbalance in
spatial cycling behaviour, is nevertheless clearly instructive. We will implement
this sort of visual data analysis throughout the book: 1. expose pattern; 2.
model an expectation derived from this pattern; 3. characterise deviation from
expectation.

1.2 Concepts

Figure 1.4: Gender comparison of London bikeshare trips made by registered
users, Jan 2012 — Feb 2013 (c.5m records).

Task

Watch Jo Wood’s TEDx talk, which gives a fuller explanation of this
case study:

e https://www.youtube.com/embed/FaRBUNO5PZI

In the talk Jo argues that bikeshare systems can help democratise cycling,
and he makes a compelling case for the role of visualization in uncovering
structure in these sorts of large-scale behavioural data. You also might
notice that Jo uses several rhetorical devices to communicate with data
graphics; we will look deeper into these in Chapter 8, on Data Storytelling.

1.2.3 How we do visualization design and analysis

R for modern data analysis

All data collection, analysis and reporting activity will be completed using the
open source statistical programming environment R. There are several benefits
that come from being fully open-source, with a critical mass of users. Firstly,
there is an array of online fora, tutorials and code examples from which to

https://www.youtube.com/embed/FaRBUnO5PZI

8 1 Introduction

learn. Second, with such a large community, there are numerous expert R users
who themselves contribute by developing packages that extend its use.

Of particular importance is the tidyverse. This is a set of packages for doing
data science authored by the software development team at Posit. tidyverse
packages share a principled underlying philosophy, syntax and documentation.
Contained within the tidyverse is its data visualization package, ggplot2. This
package predates the tidyverse and is one of the most widely-used toolkits for
generating data graphics. As with other visualization toolkits it is inspired
by Wilkinson (1999)’s The Grammar of Graphics; the gg in ggplot2 stands
for Grammar of Graphics. We will cover some of the design principles behind
ggplot2 and tidyverse in Chapter 3.

Quarto for reproducible research

In the last decade there has been much introspection into how science works,
particularly how statistical claims are made from reasoning over evidence. This
came on the back of, amongst other things, a high profile paper published in
the journal Science (Open Science Collaboration 2015), which found that of
100 contemporary peer-reviewed empirical papers in Psychology the findings of
only 39 could be replicated. The upshot is that researchers must now endeavour
to make their work transparent, such that “all aspects of the answer generated
by any given analysis [can] be tested” (Brunsdon and Comber 2021).

A reproducible research project should be accompanied with code and data
that:

o allow tables and figures presented in research outputs to be regenerated
o do what is claimed (the code works)
e can be justified and explained through proper documentation

In this setting proprietary data analysis software that support point-and-click
interaction, previously used widely in the social sciences, are problematic. First,
point-and-click software are usually underpinned by code that is closed. It is
not possible, and therefore less common, for the researcher to fully interrogate
the underlying procedures that are being implemented, and the results need to
be taken more or less on faith. Second, replicating and updating the analysis in
light of new data is challenging. It would be tedious to make notes describing
all interactions performed when working with a dataset via a point-and-click-
interface.

As a declarative programming environment, it is very easy to provide such
a provenance trail in R. Also, and significantly, the Integrated Development
Environments (IDEs) through which R is accessed offer computational notebook
environments that blend input code, explanatory prose and outputs. Through
the technical elements of this book, we will prepare these sorts of notebooks
using Quarto.

1.8 Techniques 9

1.3 Techniques

Readers of this book might already have some familiarity with R and the
RStudio IDE. If not, then this section is designed to quickly acclimatise you to
R and RStudio and to briefly introduce Quarto, R scripts and RStudio Projects.
The accompanying template file, o1-template.qmd’, can be downloaded from the
book’s companion website. This material on setup and basics is introduced
briskly. For a more involved introduction, readers should consult Wickham,
Cetinkaya-Rundel, and Grolemund (2023), the handbook for data analysis in
R.

1.3.1 R and RStudio

o Install the latest version of R. Note that there are installations for Windows,
macOS and Linux. Run the installation from the file you downloaded (an
.exe OT .pkg extension).

o Install the latest version of RStudio Desktop. Note again that there are
separate installations depending on operating system — for Windows an .exe
extension, macOS a .dmg extension.

¢ Once installed, open the RStudio IDE.

e Open an R Script by clicking File > New File > R script .

Figure 1.5: Annotated screenshots of the RStudio IDE.

You should see a set of windows roughly similar to those in Figure 1.5. The
top left pane is used either as a code editor (the tab named untitled1) or data

1 https://vis4sds.github.io/vis4sds/files/01-template.qmd

https://vis4sds.github.io/vis4sds/files/01-template.qmd

10 1 Introduction

viewer. This is where you’ll write, organise and comment R code for execution
or inspect datasets as a spreadsheet representation. Below this in the bottom
left pane is the R, Console, in which you write and execute commands directly.
To the top right is a pane with the tabs Environment and History. This displays
all objects — data and plot items, calculated functions — stored in-memory
during an R session. In the bottom right is a pane for navigating through
project folders, displaying plots, details of installed and loaded packages and
documentation on functions.

1.3.2 Compute in the console

You will write and execute almost all code from the code editor pane. To start
though, let’s use r as a calculator by typing some commands into the console.
You’ll create an object (x) and assign it a value using the assignment operator
(<-), then perform some simple statistical calculations using functions that are
held within the base package.

Type the commands contained in the code block below into your R Console.
Notice that since you are assigning values to each of these objects, they are
stored in memory and appear under the Global Environment pane.

Create variable and assign it a value.

X <- 4

Perform some calculations using R as a calculator.

X_2 <= x"2

Perform some calculations using functions that form base R.

Xx_root <- sqrt(x_2)

1 R package documentation

The base package exists as standard in r. Unlike other packages, it does
not need to be installed and called explicitly. One means of checking the
package to which a function belongs is to call the documentation on that
function, via the help command (2): e.g. ?mean().

1.3.3 Install some packages

There are two steps to getting packages down and available in your working
environment:

1. install.packages("<package-name>") downloads the named package
from a repository.

2. library(<package-name>) makes the package available in your current
session.

1.8 Techniques 11

Download tidyverse, the core collection of packages for doing Data Science in
R, by running the code below:

install.packages("tidyverse")

If you have little or no experience in R, it is easy to get confused about
downloading and then using packages in a session. For example, let’s say we
want to make use of the Simple Features package (sf) (Pebesma 2018) for
performing spatial operations.

library(sf)

Unless you’ve previously installed sf, you’ll probably get an error message that
looks like this:

> Error in library(sf): there is no package called ‘sf’

So let’s install it.

install.packages("sf")

And now it’s installed, bring up some documentation on one of its functions,
st_contains(), by typing ?<function-name> into the Console.

?st_contains()

Since you’ve downloaded the package but not made it available to your session,
you should get the message:

> Error in .helpForCall(topicExpr, parent.frame()) :

no methods for ‘st_contains’ and no documentation for it as a function

Let’s try again, by first calling library(sf). ?st_contains() should execute with-
out error, and the documentation on that function should be presented to you
via the Help pane.

library(sf)
Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0

?st_contains()

So now install some of the remaining core packages on which this book
depends. Run the block below, which passes a vector of package names to the
install.packages() function.

12 1 Introduction

pkgs <- c(
"devtools","here", "quarto","fst","tidyverse", "lubridate",
"tidymodels", "gganimate", "ggforce", "distributional", "ggdist"
)
install.packages (pkgs)

1 R package visibility

If you wanted to make use of an installed package only very occasionally
in a single session, you could access it without explicitly loading it via
library(<package-name>), using this syntax: <package-name>::<function_name>,
e.g. sf:ist_contains().

1.3.4 Experiment with Quarto

Quarto documents are suffixed with the extension .qmd. They resemble Mark-
down, a lightweight language designed to minimise tedious markup tags
(<header></header>) when preparing HTML documents. The idea is that you
trade some flexibility in the formatting of your HTML for ease of writing.
Working with Quarto documents feels very similar to Markdown. Sections are
denoted hierarchically with hashes (#, ##, ###) and emphasis using “+” symbols
(xemphasis* *xadded+x reads emphasis added). Different from standard Mark-
down, Quarto documents can also contain code chunks to be run when the
document is rendered. They support the creation of reproducible, dynamic and
interactive notebooks. Dynamic and reproducible because the outputs may
change when there are changes to the underlying data; interactive because
they can execute not just R code blocks, but also Jupyter Widgets, Shiny and
Observable JS. Each chapter of this book has an accompanying Quarto file.
In later chapters you will use these to author computational notebooks that
blend code, analysis prose and outputs.

Download the o1-template.qmd file for this chapter and open it in RStudio by
clicking File > open File ... > <your-downloads>/01-template.qnd. Note that there
are two tabs that you can switch between when working with .qmd files. Source
retains markdown syntax (e.g. #|##|### for headings); Visual renders these tags
and allows you to, for example, perform formatting and build tables through
point-and-click utilities.

A quick anatomy of .qmd files :

¢ YAML - positioned at the head of the document, and contains metadata
determining amongst other things the author details and the output format
when rendered.

o TEXT - incorporated throughout to expand upon your analysis.

1.8 Techniques 13

¢ CODE chunks - containing discrete blocks that are run when the .qmd file is
rendered.

Figure 1.6: The anatomy of .qnd files

The YAML section of a .qmd file controls how your file is rendered and consists
of key: value pairs enclosed by ---. Notice that you can change the output
format to generate, for example, .pdf, .docx files for your reports.

author: "Roger Beecham"
title: "Chapter 01"
format: html

Quarto files are rendered with the Render button, annotated in Figure 1.6
above. This starts pandoc, a library that converts Markdown files, and executes
all the code chunks and, in the case above, outputs an .htmt file.

¢ Render the o1-template.qnd file for this chapter by clicking the Render button.

Code chunks in Quarto can be customised in different ways. This is achieved
by populating fields immediately after the curly brackets used to declare the
code chunk.

{r}
#| label: <chunk-name>
#| echo: true

#] eval: false

14 1 Introduction

The settings above mean that any R code below
is not run (evaluated), but printed (echoed)

in this position when the .gmd doc is rendered.

A quick overview of the parameters:

e label: <chunk-name> Chunks can be given distinct names. This is useful for
navigating Quarto files. It also supports chaching — chunks with distinct
names are only run once, important if certain chunks take some time to
execute.

e echo: <true|false> Determines whether the code is visible or hidden from the
rendered file. If the output file is a data analysis report, you may not wish
to expose lengthy code chunks as these may disrupt the discursive text that
appears outside of the code chunks.

e eval: <true|false> Determines whether the code is evaluated (executed). This
is useful if you wish to present some code in your document for display
purposes.

e cache: <true|false> Determines whether the results from the code chunk are
cached.

1.3.5 R Scripts

While there are obvious benefits to working in .gmd documents for data analysis,
there may be occasions where a script is preferable. R scripts are plain text
files with the extension .r. They are typically used for writing discrete but
substantial code blocks that are to be executed. For example, a set of functions
that relate to a particular use case might be organised into an R script, and
those functions referred to in a data analysis from a .qnd in a similar way
as one might import a package. Below is an example script file with helper
functions to support flow visualizations in R. The script is saved with the
file name bezier_path.r. If it were stored in a sensible location, like a project’s
code folder, it could be called from a .qmd file with source("code/bezier_path™).
R scripts can be edited in the same way as Quarto files in RStudio, via the
code editor pane.

Filename: bezier_path.R

Author: Roger Beecham

This function takes cartesian coordinates defining origin
and destination locations and returns a tibble representing
a path for an asymmetric bezier curve. The implementation

follows Wood et al. 2011. doi: 10.3138/carto.46.4.239.

BN

1.8 Techniques 15

o_x, o_y : numeric coords of origin
d_x, d_y : numeric coords of destination
od_pair : text string identifying name of od-pair
curve_extent : optional, controls curve angle
curve_position : optional, controls curve position
get_trajectory <- function (o_x, o_y, d_x, d_y, od_pair,
curve_extent=-90, curve_position=6)
{
curve_angle = get_radians(-curve_extent)
x = (o_x - d_x)/curve_position
y = (o_y - d_y)/curve_position
c_x = d_x + x * cos(curve_angle) - y * sin(curve_angle)
c_y = d_y +y * cos(curve_angle) + x * sin(curve_angle)
d <- tibble::tibble(x = c(o_x, c_x, d_x), y = c(o_y, c_y,
d_y), od_pair = od_pair)
return(d)

Helper function converts degrees to radians.
degrees : value of angle in degrees to be transformed

get_radians <- function(degrees) { (degrees x pi) / (180) }

R Scripts are more straightforward than Quarto files in that you don’t have
to worry about configuring code chunks. They are really useful for quickly
developing bits of code. This can be achieved by highlighting the code that
you wish to execute and clicking the run icon at the top of the code editor pane

or by typing + on Windows, + on macOS.

1 .qmd, not R scripts, for data analysis

Unlike .qgmd, everything within a script is treated as code to be executed,
unless it is commented with a #. Comments should be informative but
paired back. As demonstrated above, it becomes somewhat tedious to
read comments when they tend towards prose. For social science use
cases, where code is largely written for analysis rather than software
development, computational notebooks such as .qmd are preferred over R
scripts.

1.3.6 Create an RStudio Project

Throughout the book we will use project-oriented workflows. This is where
all files pertaining to a data analysis — data, code and outputs — are organ-
ised from a single top-level, or root, folder and where file path discipline is

16 1 Introduction

maintained such that all paths are relative to the project’s root folder (see
Chapter 7 of Wickham, Cetinkaya-Rundel, and Grolemund 2023). You can
imagine this self-contained project setup is necessary for achieving reproducibil-
ity of your research. It allows anyone to take a project and run it on their own
machines with minimal adjustment.

When opening RStudio, the IDE automatically points to a working directory,
likely the home folder for your local machine. RStudio will save any outputs
to this folder and expect any data you use to be saved there. Clearly, to
incorporate neat, self-contained project workflows you will want a dedicated
project folder rather than the default home folder for your machine. This can
be achieved with the setwd(<path-to-your-project>) function. The problem with
doing this is that you insert a path which cannot be understood outside of
your local machine at the time it was created. This is a real pain. It makes
simple things like moving projects around on your machine an arduous task,
and most importantly it hinders reproducibility if others are to reuse your
work.

RStudio Projects resolve these problems. Whenever you load an RStudio
Project, R starts up and the working directory is automatically set to the
project’s root folder. If you were to move the project elsewhere on your machine,
or to another machine, a new root is automatically generated — so RStudio
projects ensure that relative paths work.

Figure 1.7: Creating an RStudio Project

Let’s create a new Project for this book:

e Select File > New Project > New Directory.
e Browse to a sensible location and give the project a suitable name. Then
click create Project.

You will notice that the top of the Console window now indicates the root for
this new project (~projects/visasds).

e In the top-level folder of your project, create folders called code, data, figures.
e Save this session’s e1-template.qmd file to the visasds folder.

Your project’s folder structure should now look like this:

1.4 Conclusions 17

vis4sds\
vis4sds.Rproj
0l-template.qgmd
code\
data\

figures\

1.4 Conclusions

Visual data analysis approaches are necessary for exploring complex patterns in
data and to make and communicate claims under uncertainty. This is especially
true of social data science applications, where datasets are repurposed for
research often for the first time, contain complex structure and geo-spatial
relations that cannot be easily captured by statistical summaries alone and,
consequently, where the types of questions that can be asked and the techniques
deployed to answer them cannot be specified in advance. This is demonstrated
in the book as we explore (Chapters 4 and 5), model under uncertainty (Chapter
6) and communicate (Chapters 7 and 8) with various social science datasets.
Different from other visualization ‘primers’, we pay particular attention to
how statistics and models can be embedded into graphics (Gelman 2004). All
technical activity in the book is completed in R, making use of tools and
software libraries that form part of the R ecosystem: the tidyverse for doing
modern data science and Quarto for helping to author reproducible research
documents.

1.5 Further Reading

A paper that introduces modern data analysis and data science in a straight-
forward way, eschewing much of the hype:

e Donoho, D. 2017. “50 Years of Data Science” Journal of Computational and
Graphical Statistics, 26(6): 745-66. doi: 10.1080/10618600.2017.13847340.

An excellent ‘live’ handbook on reproducible data science:

e The Turing Way Community. 2022. The Turing Way: A handbook for
reproducible, ethical and collaborative research (1.0.2). doi: 10.5281 /zen-
0d0.3233853.

On R Projects and workflow:

https://doi.org/10.1080/10618600.2017.13847340
https://doi.org/10.5281/zenodo.3233853
https://doi.org/10.5281/zenodo.3233853

18 1 Introduction

e Wickham, H., Cetinkaya-Rundel, M., Grolemund, G. 2023, “R for Data
Science, 2nd Edition”, Sebastopol, CA: O’Reilly.
— Chapter 6.

On Quarto:

e Wickham, H., Cetinkaya-Rundel, M., Grolemund, G. 2023, “R for Data
Science, 2nd Edition”, Sebastopol, CA: O’Reilly.
— Chapters 28, 29.

2

Data Fundamentals

By the end of this chapter you should gain the following knowledge and
practical skills.

Knowledge outcomes

[0 Learn the vocabulary and concepts used to describe data.
O Appreciate the characteristics and importance of tidy data (Wickham
2014).

Skills outcomes

O Read-in large external files as data frames.

[0 Calculate descriptive summaries over datasets using dplyr.

0 Learn how to structure, join and reshape data using dplyr and tidyr.
O Create statistical graphics for initial data description and exploration.

2.1 Introduction

This chapter covers the basics of how to describe and organise data. While this
might sound prosaic, there are several reasons why being able to consistently
describe a dataset is important. First, it is the initial step in any analysis and
helps delimit the analytical procedures that can be deployed. This is especially
relevant to modern data analysis, where it is common to apply the same analysis
templates over many different datasets. Describing data using a consistent
vocabulary enables you to identify which analysis templates to reuse. Second,
relates to the point in Chapter 1, that social data science projects usually
involve repurposing datasets for the first time. It is often not obvious whether
a dataset contains sufficient detail and structure to characterise the behaviours
being researched and the target populations it is assumed to represent. This
leads to additional levels of uncertainty and places greater importance on the
initial steps of data processing, description and exploration.

19

20 2 Data Fundamentals

Through the chapter we will develop vocabulary for describing and thinking
about data, as well as some of the most important data processing and
organisation techniques in R. We will do so using data from New York’s
Citibike system.

i Data vocabulary

A consistent vocabulary for describing data is especially useful when
learning modern visualization toolkits like ggplot2, Tableau and vega-lite.
We will expand upon this in some detail in Chapter 3 as we introduce
the fundamentals of visualization design and the Grammar of Graphics
(Wilkinson 1999).

2.2 Concepts
2.2.1 Data frames

Throughout this book we will work with data frames. These are spreadsheet-
like representations where rows are observations and columns are variables. In
an R data frame, variables are vectors that must be of equal length. Where
observations have missing values, for certain variables the missing values must
be substituted with something, usually with na or similar. This constraint can
cause difficulties. For example, when working with variables that contain many
values of different length for an observation, we create a special class of column,
a list-column. Organising data according to this simple structure — rows as
observations, columns as variables — is useful for developing analysis templates
that work with the tidyverse package ecosystem.

2.2.2 Types of variable

A familiar classification for describing data is that developed by Stevens
(1946) when considering the level of measurement of a variable. Stevens (1946)
organises variables into two classes: variables that describe categories of things
and variables that describe measurements of things.

Categories include attributes like gender, customer segments, ranked orders
(1st, 2nd, 3rd largest etc.). Measurements include quantities like distance, age
and travel time. Categories can be further subdivided into those that are
unordered (nominal) and those that are ordered (ordinal). Measurements can
also be subdivided. Interval measurements are quantities where the computed
difference between two values is meaningful. Ratio measurements have this

2.2 Concepts 21

Table 2.1: Breakdown of variable types and corresponding mathematical
operations.

Measurement | Example | Operators | Midpoint | Spread
Categories
Nominal Political parties; | = # mode entropy
street names
ordinal Terrorism threat | = # median percentile
levels
Measures
Interval Temperatures; =# <>+ — | mean variance
years
Ratio Distances; prices =# <>+ — | mean variance
| x +

property, but also have a meaningful o, where e means the absence of something,
and the ratio of two values can be computed.

Why is this useful? The measurement level of a variable determines the types
of data analysis operations that can be performed and therefore allows us to
make quick decisions when working with a dataset for the first time (Table 2.1).

Task 1

Complete the data description table below identifying the measurement
level of each variable in the New York bikeshare stations dataset.

Variable name Variable value Measurement level

name “Central Park”
capacity 80
rank_capacity 45

date_opened “2014-05-23”
longitude -74.00149746
latitude 40.74177603

2.2.3 Types of observation

Observations form an entire population or a sample that we expect is rep-
resentative of a target population. In social data science applications we
often work with datasets that are so-called population-level. The Citibike
dataset is a complete, population-level dataset in that every Citibike journey
is recorded. Whether or not this is truly a population-level dataset, however,
depends on the analysis purpose. When analysing trips made by Citibike
users, are we interested only in those cyclists? Or are we taking the patterns
observed through our analysis to make inferences about New York cycling more

22 2 Data Fundamentals

generally? If the latter, then there are problems as the level of detail we have on
our sample is pretty trivial compared to traditional, actively-collected datasets,
where data collection activities are designed with a target population in mind.
It may therefore be difficult to gauge how representative Citibike users and
Citibike cycling is of New York’s general cycling population. The flipside is that
so-called passively-collected data may not suffer from the same problems of
non-response bias and social-desirability bias as traditional, actively-collected
data.

2.2.4 Tidy data

We will work with data frames organised such that columns always and
only refer to variables and rows always and only refer to observations. This
arrangement, called tidy (Wickham 2014), has two key advantages. First, if
data are arranged in this tidy form, then it is easier to apply and re-use tools
for wrangling them as they have the same underlying structure. Second, placing
variables into columns with each column containing a vector of values, means
that we can take advantage of R’s vectorised functions for transforming data.
This is demonstrated in the technical element of the chapter.

The three rules for tidy data (Wickham 2014):

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observation unit forms a table.

The concept of tidy data, and its usefulness for tidyverse-style operations,
is best explained through example. The technical element to this chapter is
therefore comparatively lengthy and demonstrates key coding templates for
organising and re-organising data frames for analysis.

2.3 Techniques

In this section we import, describe, transform and tidy data from New York’s
Citibike bikeshare system.

o Download the o2-template.qmd' file, and save it to your vis4sds project, created
in Chapter 1.

e Open your visasds project in RStudio, and load the template file by clicking
File > Open File ... > 02-template.qgmd.

1 https://vis4sds.github.io/vis4sds/files/02-template.qmd

https://vis4sds.github.io/vis4sds/files/02-template.qmd
https://vis4sds.github.io/vis4sds/files/02-template.qmd

2.8 Techniques 23

2.3.1 Import

In the template file there is documentation on how to set up your R session
with key packages — tidyverse , fst, lubridate, sf. The data were collected using
the bikedata R package. A subset of data from New York’s bikeshare system,
Citibike, were collected for this chapter and can be downloaded from the book’s
accompanying data repository?.

The code for reading in these data may be familiar to most readers. The here
package, which reliably creates paths relative to a project’s root, is used to
pass the locations at which the New York trips and stations data are stored as
a parameter to read_csv() and read_fst(). Notice that we use assignment (<-),
so data are loaded as objects and appear in the Environment pane of RStudio.

Read in local copies of the trips and stations data.
ny_trips <- read_fst(here("data", "ny_trips.fst"))

ny_stations <- read_csv(here("data", "ny_stations.csv'"))

L3 . .
1 fst for in-memory analysis

fst is a special class of file that implements in the background various
operations to speed-up reading and writing of data. This makes it possible
to work with large datasets in-memory in R rather than connecting to a
database and returning data summaries/subsets.

Inspecting the layout of the stations data with view(ny_stations) you will notice
that the top line is the header and contains column (variable) names. The
glimpse() function can be used to quickly describe a data frame’s dimensions.
We have 500,000 trip observations in ny_trips and 11 variables; the 500,000
represents a random sample of ¢.1.9 million trips recorded in June 2020. The
function also prints out the object type for each of these variables, with the
variables either of type int, chr or dbl.

In this case the assignment needs correcting. start_time and stop_time may
be better represented in date-time format; the station identifier variables
(e.g. start_station_id) are more efficient when converted to int types; and
the geographic coordinates, currently stored as text strings (chr), are better
converted as floating points (dbl) or PoINT geometry types (Pebesma 2018). In
the 02-template.qmd file are code chunks for doing these conversions. There are
some slightly more involved data transform procedures in this code, which you
may wish to ignore at this stage.

glimpse(ny_trips)
Rows: 500,000

2https: //github.com/vis4sds/data

https://github.com/vis4sds/data

24 2 Data Fundamentals

Figure 2.1: ny_trips and ny_stations as they appear when calling view().

Columns: 11

$ id <int> 1, 2, 3, 4, 5, 6, 7...

S city <chr> "ny", "ny", "ny", "n.."

S trip_duration <dbl> 1062, 3810, 1017, 226.

$ start_time <chr> "2020-06-01 00:00:03",

S stop_time <chr> "2020-06-01 00:17:46",

S start_station_id <chr> "ny3419", "ny366", 'ny389",
S end_station_id <chr> "ny3419", '"ny336", 'ny3562",
S bike_id <chr> "39852", "37558", "37512",
S user_type <chr> "Customer'", "Subscriber",
S birth_year <chr> "1997", "1969", "1988",

S gender <dbl> 2, 0, 2, 0, 2, 1, 2, 2,

glimpse(ny_stations)

Rows: 1,010

Columns: 6

$ id <int> 1, 2, 3, 4, 5, 6, 7,

$ city <chr> "ny", "ny", "ny", "ny", "ny", "n..."

S stn_id <chr> "ny116", "ny119", "ny120", "ny127", "n..."

2.8 Techniques 25

Table 2.3: dplyr functions (verbs) for manipulating data frames.

function description

Filter() Picks rows (observations) if their values match a specified
criteria

arrange() Reorders rows (observations) based on their values

select() Picks a subset of columns (variables) by name (or name
characteristics)

rename () Changes the name of columns in the data frame

mutate () Adds new columns

group_by() | Chunks the dataset into groups for grouped operations

summarise() | Calculates single-row (non-grouped) or multiple-row (if
grouped) summary values

S name <chr> "W 17 St & 8 Ave'", "Park Ave", "B...."
S longitude <chr> '"-74.00149746", '"-73.97803415", "..."
S latitude <chr> '"40.74177603", "40.69608941", "..."

2.3.2 Manipulate
Manipulate with dptyr and pipes (|>)

dplyr is the foundational package of the tidyverse. It provides a grammar of
data manipulation, with access to functions that can be variously combined
to support most data processing and manipulation tasks. Once familiar with
dplyr functions, you will find yourself generating analysis templates to re-use
whenever working on a dataset.

All dplyr functions operate in a consistent way:

1. Start with a data frame.

2. Pass arguments to a function performing some updates to the data
frame.

3. Return the updated data frame.

So every dplyr function expects a data frame and will always return a data
frame.

dplyr functions are designed to be chained together, and this chaining of
functions can be achieved using the pipe operator (|>). Pipes are mechanisms
for passing information in a program. They take the output of a set of code
(a dplyr specification) and make it the input of the next set (another dplyr
specification). Pipes can be easily applied to dplyr functions and the functions
of all packages that form the tidyverse. We mentioned in Chapter 1 that ggplot2

26 2 Data Fundamentals

provides a framework for specifying a layered grammar of graphics (more on
this in Chapter 3). Together with the pipe operator, dplyr supports a layered
grammar of data manipulation. You will see this throughout the book as we
develop and re-use code templates for performing some data manipulation that
is then piped to a ggplot2 specification for visual analysis.

count() and summarise() Oover rows

Let’s combine some dplyr functions to generate statistical summaries of the New
York bikeshare data. First we’ll count the number of trips made in June 2020 by
user_type, a variable distinguishing casual users from those formally registered
to use the system (customer vs. subscriber cyclists). dplyr has a convenience
function for counting, so we could run the code below, also in the e2-template.qgmd
for this chapter.

Take the ny_trips data frame.

ny_trips |>
Run the count function and sort the result.
count(user_type, sort=TRUE)

user_type n

1 Subscriber 347204

2 Customer 152796

There are a few things happening in the count() function. It takes the usr_type
variable from ny_trips, organises or groups the rows in the data frame according
to its values (customer | subscriber), counts the rows and then orders the
summarised output descending on the counts.

Often you will want to do more than simply counting, and you may also want
to be more explicit in the way the data frame is grouped for computation. A
common workflow is to combine group_by() and summarise(), and in this case
arrange() to replicate the count() example.

Take the ny_trips data frame.
ny_trips |>
Group by user_type.
group_by (user_type) |>
Count the number of observations per group.
summarise(count=n()) |>
Arrange the grouped and summarised (collapsed) rows in count.
arrange(desc(count))
A tibble: 2 x 2
user_type count
<chr> <int>
1 Subscriber 347204
2 Customer 152796

2.8 Techniques 27

In ny_trips there is a variable measuring trip duration in seconds (trip_duration).
It may be instructive to calculate some summary statistics to see how trip du-
ration varies between these groups. The code below uses group_by (), summarise()
and arrange() in exactly the same way, but with the addition of other aggregate
functions summarises the trip_duration variable according to central tendency
(mean and standard deviation) and by user_type.

Take the ny_trips data frame.
ny_trips |>
mutate(trip_duration=trip_duration/60) |>
Group by user type.
group_by (user_type) |>
Summarise over the grouped rows,
generate a new variable for each type of summary.
summarise(
count=n(),
avg_duration=mean(trip_duration),
median_duration=median(trip_duration),
sd_duration=sd(trip_duration),
min_duration=min(trip_duration),
max_duration=max(trip_duration)
) 1>
Arrange on the count variable.

arrange(desc(count))

A tibble: 2 x 7

user_type count avg_dur med_dur sd_dur min_dur max_dur
#i# <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Subscriber 347204 20.3 14.4 116. 1.02 33090.
2 Customer 152796 43.3 23.1 383. 1.02 46982.

... with abbreviated variable names

As each line is commented you hopefully get a sense of what is happening in
the code above. Since dplyr functions read like verbs, and code is executed
sequentially, it greatly helps to organise dplyr code such that each new verb
(function call) occupies a single line, separated with a pipe (|>). Once you are
familiar with dptlyr, it becomes very easy to read, write, re-use and share code
in this way.

1 On pipes |>

Remembering that pipes take the output of a set of code and make it
the input of the next set, separate lines are used for each call to the pipe
operator. This is good practice for supporting readability of your code,

28 2 Data Fundamentals

Table 2.4: A breakdown of aggregate functions commonly used with

summarise().

Function Description

n() Counts the number of observations

n_distinct(var) Counts the number of unique observations

sum(var) Sums the values of observations

max (var) |min(var) Finds the min\max values of observations

mean(var) [median(var)| ... | Calculates central tendency of observations
Many more

and for debugging and learning how your data is affected by each line.
Especially if dplyr is new to you, we recommend you run each code line
separated by a pipe (|>) in the Console and observe how the dataset is
changed.

Manipulate dates with lubridate

Let’s continue this investigation of trips by user type by profiling how usage
varies over time. To do this we will need to work with date-time variables. The
lubridate package provides various convenience functions for this.

In the code block below we extract the day of week and hour of day from the
start_time variable using lubridate’s day accessor functions. Documentation
on these can be accessed in the usual way (?<function-name>). Next we count
the number of trips made by hour of day, day of week and user type. The
summarised data frame will be re-used several times in our analysis, so we
store it as an object with a suitable name (ny_temporal) using the assignment
operator.

Create an hour of day and day of week summary by user type
and assign it the name "ny_temporal".
ny_temporal <- ny_trips |>
mutate(
Create a new column to identify dow.
day=wday (start_time, label=TRUE),
Create a new column to identify hod.
hour=hour (start_time)) |>
Group by day, hour, user_type.
group_by (user_type, day, hour) |[>
Count the grouped rows.
summarise(count=n()) |>

ungroup ()

2.8 Techniques 29

1 Keeping track of derived data

Whether or not to store derived data frames, like the newly assigned
ny_temporal, in a session is not an easy decision. You should avoid clutter-
ing the Environment pane with many data objects. Often when generating
charts it is necessary to create these sorts of derived tables as input data
to ggplot2. Adding derived data frames to the RStudio Environment
pane each time an exploratory plot is created risks an unhelpfully large
number of such tables. A general rule: if the derived data frame is to
be used more than three times in a data analysis or is computationally
intensive, create and assign it (<-) as a named object.

In Figure 2.2 the newly derived data are plotted. Code for creating this data
graphic is below. The plot demonstrates a familiar weekday-weekend pattern
of usage. Trip frequencies peak in the morning and evening rush hours during
weekdays and mid/late-morning and afternoon during weekends, with the
weekday afternoon peak much larger than the morning peak. There are obvious
differences in the type of trips made by subscribers versus customers — the
temporal signature for subscribers appears to match more closely what one
would expect of commuting behaviour. That this pattern exists is notable when
remembering the data are from June 2020, a time when New York residents
were emerging from lockdown. It would be instructive to compare with data
from a non-Covid year. The fact that bikeshare is recorded continuously, in
contrast to actively-collected survey data, makes this sort of behavioural change
analysis possible.

Figure 2.2: Citibike trips made by hour of day and day and week, differentiated
by customer type.

30 2 Data Fundamentals

Calculate trips by hour of day, day and customer type.
ny_trips |>
mutate(
day=wday (start_time, label=TRUE),
hour=hour (start_time)) |>
group_by (user_type, day, hour) |[>
summarise(count=n()) |>
ungroup() |>
Pipe to ggplot2 for plotting.
ggplot(aes(x=hour, y=count)) +
geom_Lline(aes(colour=user_type), size=1) +
scale_colour_manual(values=c("#e3lalc", "#1f78b4")) +
facet_wrap(~day, nrow=1)+

labs(x="hour of day", y="trip counts", colour="user type")

Relate tables with join()

Trip distance is not recorded directly in the ny_trips table, but may
be important for profiling usage behaviour. Since ny_stations contains
coordinates corresponding to station locations, distances can be calcu-
lated by linking these station coordinates to the origin and destination
stations recorded in ny_trips. To relate the two tables we need to specify
a join between them.

A sensible approach is to:

1. Select all uniquely cycled trip pairs (origin-destination pairs) that
appear in the ny_trips table.

2. Bring in the corresponding coordinate pairs representing the origin
and destination stations by joining on the ny_stations table.

3. Calculate the distance between the coordinate pairs representing
the origin and destination.

The code below is one way of achieving this.

Take the ny_trips data frame.
od_pairs <- ny_trips |>
Select trip origin and destination (OD) station columns
and extract unique OD pairs.
select(start_station_id, end_station_id) |> unique() |>
Select lon, lat columns from ny_stations and join on origin column.
left_join(
ny_stations |> select(stn_id, longitude, latitude),

by=c("start_station_id"="stn_id")

2.8 Techniques 31

Table 2.5: A breakdown of dplyr join functions.

left_join() all rows from table x

right_join() all rows from table y

full_join() all rows from both table x and y

all rows from table x where there are matching values

in table y, keeping just columns from table x

all rows from table x where there are matching values

inner_join() in table y, returning all combinations where there are
multiple matches

semi_join()

all rows from table x where there are not matching values

anti-goin in table y, never duplicating rows of table x

) 1>
Rename new lon, lat columns and associate with origin station.
rename (o_lon=longitude, o_lat=latitude) |>
Select lon, lat columns from ny_stations and join
on destination column.
left_join(
ny_stations |> select(stn_id, longitude, latitude),
by=c("end_station_id"="stn_id")
e
Rename new lon, lat columns and associate with destination station.
rename (d_lon=longitude, d_lat=latitude) |>
Compute distance calculation on each row (od_pair).
rowwise() |>
Calculate distance and express 1in kms.
mutate(
dist=
geosphere: :distHaversine(c(o_lat, o_lon), c(d_lat, d_lon))/1000
e
ungroup ()

Some new functions are introduced: select() to pick or drop variables, rename()
to rename variables and a convenience function for calculating straight line
distances from polar coordinates, distHaversine(). The key function to emphasise
is the left_join(). If you've worked with relational databases, dplyr’s join
functions will be familiar to you. In a left_join all the values from the first
(left-most) table are retained, ny_trips in this case, and variables from the table
on the right , ny_stations, are added. We specify the variable on which tables
should be joined with the by= parameter, station_id in this case. If there is a
station_id in ny_trips that doesn’t exist in ny_stations then corresponding cells
are filled out with na.

32 2 Data Fundamentals

From the newly created distance variable we can calculate the average (mean)
trip distance for the 500,000 sampled trips — 1.6km. This might seem very short,
but remember that these are straight-line distances between pairs of docking
stations. Ideally we would calculate distances derived from cycle trajectories. A
separate reason, discovered when generating a histogram on the dist variable,
is that there are a large number of trips that start and end at the same docking
station. These might be unsuccessful hires — people failing to undock a bike for
example. We could investigate this further by paying attention to the docking
stations at which same origin-destination trips occur, as in the code block
below.

ny_trips |>
filter(start_station_id==end_station_id) |>
group_by(start_station_id) |> summarise(count=n()) |>
left_join(
ny_stations |> select(stn_id, name),
by=c("start_station_id"="stn_1id")
) 1>
arrange(desc(count))
A tibble: 958 x 3

##t start_station_1id count name

#it <chr> <int> <chr>

1 ny3423 2017 West Drive & Prospect Park West
2 ny3881 1263 12 Ave & W 125 St

3 ny514 1024 12 Ave & W 40 St

4 ny3349 978 Grand Army Plaza & Plaza St West
5 ny3992 964 W 169 St & Fort Washington Ave
6 ny3374 860 Central Park North & Adam Clayton Powell
7 ny3782 837 Brooklyn Bridge Park - Pier 2

8 ny3599 829 Franklin Ave & Empire Blvd

9 ny3521 793 Lenox Ave & W 111 St

10 ny2006 782 Central Park S & 6 Ave

... with 948 more rows

The top 10 docking stations are either in parks, near parks or located along
the river. This, coupled with the fact that same origin-destination trips occur
in much greater relative number for casual users (customer), associated with
discretionary leisure-oriented cycling, than regular users (subscriber) is further
evidence that these are valid trips. Note also the different shapes in the distri-
bution of distances for trips cycled by subscribers and customers (Figure 2.3),
again suggesting these groups may use Citibike in different ways. Code for
creating Figure 2.3 appears below the graphic.

2.8 Techniques 33

Figure 2.3: Citibike trip distances (straight-line km) for Subscriber and
Customer cyclists.

Plot faceted histograms.
ny_trips |>
Cast as factor variable to draw Subscriber plot facet first.
mutate(
user_type=factor (user_type, levels=c("Subscriber", "Customer'"))
E
ggplot(aes(dist)) +
geom_histogram() +
facet_wrap(~user_type)+

labs(x="distance = km", y="frequency")

Write functions of your own

There may be times when you need to create functions of your own. Most
often this is when you find yourself copy-pasting the same chunks of code with
minimal adaptation.

Functions have three key characteristics:

1. They are (usually) named — the name should be expressive and
communicate what the function does.

2. They have brackets <function-name()> usually containing arguments —
inputs, which determine what the function does and returns.

3. Immediately followed by <function-name()> are curly brackets ({3)
used to contain the body — code that performs a distinct task,
described by the function’s name.

34 2 Data Fundamentals

Effective functions are short and perform single, discrete operations.

You will recall that in the ny_trips table there is a variable called birth_year.
From this we can derive cyclists’ approximate age in years. Below is a function
called get_age(). The function expects two arguments: yob — a year of birth
as type chr; and yref — a reference year. In the body, lubridate’s as.period()
function is used to calculate the time in years that elapsed between these dates.

get_age() depends on lubridate.
library(lubridate)

Calculate time elapsed between two dates 1in years (age).
yob : datetime object recording birth year.
yref : datetime object recording reference year.
get_age <- function(yob, yref) {
period <- as.period(interval(yob, yref),unit = "year")

return(periodsSyear)

ny_trips <- ny_trips |>
Calculate age from birth_date.
mutate(
age=get_age(
as.POSIXct(birth_year, format="%Y"),
as.POSIXct("2020", format="%Y")

We can use the two new derived variables — distance travelled and age — in our
analysis. In Figure 2.4, we explore how approximate travel speeds vary by age,
trip distance and customer type. Again the average speed calculation should
be treated cautiously as it is based on straight line distances, and it is likely
that this will vary depending on whether the trip is made for ‘utilitarian’ or
‘leisure’ purposes. Additionally, due to the heavy subsetting data become a
little volatile for certain age groups, and so the age variable is aggregated into
5-year bands.

There are some notable patterns in Figure 2.4. Subscribers make faster trips
than do customers, although this gap narrows as trip distance increases. Trips
with a straight-line distance of 4.5km are non-trivial and so may be classed
as utilitarian even for non-regular customers. There is a very slight effect of
decreasing trip speed by age cycled for the longer trips. The volatility in the
older age groups for trips >4.5km suggests more data, and a more involved
analysis, is required to confidently establish this. For example, it may be that
the comparatively rare occurrence of trips in the 65-70 age group is made by

2.8 Techniques 35

only a small subset of cyclists; with a larger dataset we may expect a regression
to the mean effect that negates noise caused by outlier individuals.

Figure 2.4: Citibike average trip speeds (approximate) by age, customer type
and straight-line trip distance.

Generate staged dataset for plotting.
Filter weekday-only trips, less than lhr in duration,
exclude trips that start and end at same docking station,
and generate binned age and distance variables.
temp_data <- ny_trips |>
mutate(
day=wday (start_time, label=TRUE),
is_weekday=as.numeric(!day %in% c("Sat", "Sun"))
) >
filter(
is_weekday==1,
start_station_id!=end_station_id,
duration_minutes<=60,
between(age, 16, 74),
dist>.5
E
mutate(
dist_bands=case_when(
dist < 1.5 ~ "<1.5km",
dist < 3 ~ ">1.5-3km",
dist < 4.5 ~ ">3-4.5km",

36 2 Data Fundamentals

TRUE ~ ">4.5km"),
age_band=1if_else(age %% 10 > 4, ceiling(age/5)*5,
floor (age/5)*5),
speed=dist/ (duration_minutes/60)
> P>
group_by (user_type, age_band, dist_bands) |>
summarise(avg_speed=mean(speed), sample_size=n(),
std=sd(speed)) |>
ungroup ()

Plot.

temp_data |>
ggplot(aes(x=age_band, y=avg_speed))+
geom_Lline(aes(colour=user_type)) +
scale_colour_manual(values=c("#e31lalc", "#1f78b4")) +
scale_fill_manual(values=c("#e3lalc", "#1f78b4")) +
facet_wrap(~dist_bands, nrow=1) +
labs (

x="age", y="speed - km/h ", fill="user type",

colour="user type"

Remove staging dataset.

rm(temp_data)

2.3.3 Tidy

The ny_trips and ny_stations data already comply with the rules for tidy data
(Wickham 2014). Each row in ny_trips is a distinct trip and each row in
ny_stations a distinct station. However, it is common to encounter datasets
that are untidy and must be reshaped. In the book’s data repository are
two examples: ny_spread_rows and ny_spread_columns. ny_spread_rows is so-called
because the variable summary_type is spread across the rows (observations);
ny_spread_columns because multiple variables are stored in single columns — the
dist_weekday, duration_weekday columns.

ny_spread_rows
A tibble: 411,032 x 6

o_station d_station wkday count summary_type value
<dbl> <dbl> <chr> <dbl> <chr> <dbl>
1 72 116 weekend 1 dist JodlS
2 72 116 weekend 1 duration 18.2

3 72 127 weekend 4 dist 7.18

2.8 Techniques 37

4 72 127 weekend 4 duration 122.
5 72 146 weekend 4 dist 9.21
#it 6 72 146 weekend 4 duration 122.
#Ho7 72 164 weekend 1 dist 2.66
8 72 164 weekend 1 duration 12.5
9 72 173 weekend 2 dist ZodlE
10 72 173 weekend 2 duration 43.6
... with 411,022 more rows

ny_spread_columns
A tibble: 156,449 x 8
o_stat d_stat ct_wend ct_wdy dst_wnd dst_wdy dur_wnd dur_wdy

#i <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 72 116 1 3 S/ A5 3.45 18.2 49.9
2 72 127 4 4 7.18 7.18 122. 101.
3 72 146 4 2 9.21 4.61 122. 64.1
4 72 164 1 1 2.66 2.66 12:8 43.2
5 72 173 2 13 2o LS 18,9 43.6 189.
6 72 195 1 4 2.56 10.2 24.7 98.3
7 72 212 3 4.83 4.83 40.3 54.0
8 72 223 1 NA Ao 8 NA 21.1 NA
9 72 228 2 1 4.97 2.49 30.2 13.6
10 72 229 1 NA 1.22 NA 39.2 NA
... with 156,439 more rows, and abbreviated variable names

To re-organise the table in tidy form, we should identify what constitutes a
distinct observation — an origin-destination pair summarising counts, distances
and durations of trips that occur during the weekday or weekend. From here,
the table’s variables are:

e o_station: station id of the origin station

o d_station: station id of the destination station

e wkday: trip occurs on weekday or weekend

e count: count of trips for observation type

o dist: total straight-line distance in km (cumulative) of trips for observation
type

e duration: total duration in minutes (cumulative) of trips for observation type

There are two functions for reshaping untidy data, from the tidyr package:
pivot_longer() and pivot_wider(). pivot_longer() is used to tidy data in which
observations are spread across columns; pivot_wider() to tidy data in which
variables are spread across rows. The functions are especially useful in visual
data analysis to fix messy data, but also to flexibly reshape data supplied to
geplot2 specifications (more on this in Chapters 3 and 4).

38 2 Data Fundamentals

To fix ny_spread_rows, we use pivot_wider () and pass to the function’s arguments
the name of the problematic column and the column containing values used to
populate the newly created columns.

ny_spread_rows |>

pivot_wider (names_from=summary_type, values_from=value)

A tibble: 205,516 x 6

o_station d_station wkday count dist duration
##t <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 72 116 weekend 1 1.15 18.2
2 72 127 weekend 4 7.18 122.
3 72 146 weekend 4 9.21 122.
4 72 164 weekend 1 2.66 125
5 72 173 weekend 2 2.13 43.6
6 72 195 weekend 1 2.56 24.7
#Ho7 72 212 weekend 3 4.83 40.3
8 72 223 weekend 1 1.13 21.1
9 72 228 weekend 2 4.97 30.2
10 72 229 weekend 1 1.22 SO
... with 205,506 more rows

To fix ny_spread_columns requires a little more thought. First we pivot_longer()
on columns that are muddled with multiple variables. This results in a long
and thin dataset similar to ny_spread_rows — each row is the origin-destination
pair with either a count, distance or duration recorded for trips occurring
on weekends or weekdays. The muddled variables, for example dist_weekend
duration_weekday, now appear in the rows of a new column with the default
title name. This column is separated on the _ mark to create two new columns,
summary_type and wkday, used.in,pivot_wider(L

ny_spread_columns |>
pivot_longer(cols = count_weekend:duration_weekday) |>
separate(col = name, into = c("summary_type", "wkday"), sep = "_") |>

pivot_wider(names_from = summary_type, values_from = value)

A tibble: 312,898 x 6

o_station d_station wkday count dist duration
#i#t <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 72 116 weekend a J, 15 18.2
2 72 116 weekday 3 3.45 49.9
3 72 127 weekend 4 7.18 122.
#it 4 72 127 weekday 4 7.18 101.
5 72 146 weekend 4 9.21 122.

2.8 Techniques 39

6 72 146 weekday 2 4.61 64.1

7 72 164 weekend 1 2.66 12,5

8 72 164 weekday 1 2.66 43.2

9 72 173 weekend 2 2.13 43.6

10 72 173 weekday 13 13.9 189.

... with 312,888 more rows

Task 2

Figure 2.2 uses a derived dataset that summarises trip counts by user_type
and day_of_week. This dataset is created in the template file for the chapter
and is named ny_temporal. Each observation is a trip count on a day of
week, hour of day and for a given user type (customer or Subscriber).

ny_temporal <- ny_trips |>
mutate(
day=wday(start_time, label=TRUE),
hour=hour (start_time)) |>
group_by (user_type, day, hour) |[>
summarise(count=n()) |>

ungroup ()

To explore whether customers and subscribers have different usage be-
haviours, we calculate the proportion of trips made by day of week for
these two user groups. Customers, as expected, contribute a greater
relative number of trips on weekends than do subscribers.

A tibble: 7 x 3

day Customer Subscriber
<ord> <db1> <db1>
1 Sun 0.198 0.144
2 Mon 0.137 0.163
3 Tue 0.144 0.172
4 Wed 0.104 0.125
5 Thu 0.0973 0.122
6 Fri 0.135 0.138
7 Sat 0.185 0.136

Can you write some dplyr code to generate such a summary? There are
several possible approaches, but you will need to think about which vari-
ables to group_by () and summarise() over, and you may need to pivot_wider ()
your dataset in order to compare the user types side-by-side.

40 2 Data Fundamentals

2.4 Conclusions

Developing the vocabulary and technical skills to systematically describe and
organise data is crucial to modern data analysis. This chapter has covered
the fundamentals: that data consist of observations and wvariables of different
types (Stevens 1946) and that in order to work effectively with datasets, these
data should be organised such that they are tidy (Wickham 2014). Most of the
chapter content was dedicated to the techniques that enable these concepts
to be operationalised. We covered how to download, transform and reshape
a reasonably large dataset from New York’s Citibike system. In doing so,
we generated insights that might inform further data collection and analysis
activity. In the next chapter we will extend this conceptual and technical
knowledge as we introduce the fundamentals of visual data analysis and
geplot2’s grammar of graphics.

2.5 Further Reading

There are many accessible introductions to the tidyverse for modern data
analysis. Two excellent resources:

o Wickham, H., Cetinkaya-Rundel, M., Grolemund, G. 2023, “R for Data

Science, 2nd Edition”, Sebastopol, CA: O’Reilly.
— Chapter 3.

e Ismay, C. and Kim, A. 2020. “Statistical Inference via Data Science: A
ModernDive into R and the Tidyverse”, New York, NY: CRC Press. doi:
10.1201/9780367409913.

— Chapters 3, 4.

Hadley Wickham’s original paper on Tidy Data:

e Wickham, H. 2010. “Tidy Data” Journal of Statistical Software, 59(10): 1-23.
doi: 10.18637/jss.v059.110.

https://doi.org/10.1201/9780367409913
https://doi.org/10.18637/jss.v059.i10

3

Visualization Fundamentals

By the end of this chapter you should gain the following knowledge and
practical skills.

Knowledge outcomes

O Recognise the characteristics of effective data graphics.

O Understand that there is a grammar of graphics, and that this gram-
mar underpins modern visualization toolkits (ggplot2, vega-lite and
Tableau).

O Appreciate how visual channels and knowledge of their encoding effec-
tiveness can be used to design and evaluate data graphics.

Skills outcomes

O Write ggplot2 code to generate statistical graphics (histograms, bar
charts, scatterplots, choropleth maps).

O Update that code to layer graphics with multiple variables.

O Write code to manipulate the order and colour of data items in statis-
tical graphics.

[0 Advanced: create glyphmaps in ggplot2 by writing code that works on
shape primitives.

O (Very) Advanced: create dot-density maps in ggplot2 using re-sampling
and functional programming.

3.1 Introduction

This chapter outlines the fundamentals of visualization design. It offers a
position on what effective data graphics should do, before discussing the
processes that take place when creating data graphics. A framework — a
vocabulary and grammar — for supporting this process is presented which,
combined with established knowledge on visual perception, helps describe,
evaluate and create effective data graphics. Talking about a vocabulary and

41

42 8 Visualization Fundamentals

grammar of data and graphics may sound somewhat abstract. However, through
an analysis of 2019 General Election results data, the chapter will demonstrate
how these concepts are fundamental to visual data analysis.

3.2 Concepts
3.2.1 Effective data graphics

Data graphics take numerous forms and are used in many different ways by
scientists, journalists, designers and many more. While the intentions of those
producing them may vary, data graphics that are effective generally have the
following characteristics:

o Expose complex structure, connections and comparisons that could not be
achieved easily via other means;

e Are data rich, presenting many numbers in a small space;

o Reveal patterns at several levels of detail, from broad overview to fine
structure;

e Are concise, emphasising dimensions of a dataset without extraneous details;

¢ Generate an aesthetic response, encouraging people to engage with the data
or question.

Consider the data graphic in Figure 3.1, which presents an analysis of
the 2016 US Presidential Election, or the Peaks and Valleys of Trump
and Clinton’s Support. The map is reproduced from an article in The
Washington Post (Gamio and Keating 2016). Included in the bottom margin
is a choropleth map coloured according to party majority, more standard
practice for reporting county-level voting. Gamio and Keating’s (2016) graphic
is clearly data rich, encoding many more data items than does the standard
choropleth. It is not simply the data density that makes the graphic successful,
however. There are careful design choices that help support comparison and
emphasise complex structure. By varying the height of triangles according
to the number of votes cast, the thickness according to whether or not the
result for Trump/Clinton was a landslide and rotating the map 90 degrees,
the very obvious differences between metropolitan, densely populated coastal
counties that voted emphatically for Clinton and the vast number of suburban,
provincial town and rural counties (everywhere else) that voted for Trump, are
exposed.

3.2 Concepts 43

3.2.2 Grammar of Graphics

“Data graphics visually display measured quantities by means of
the combined use of points, lines, a coordinate system, numbers,
symbols, words, shading, and color.”

Tufte (1983)

So the Washington Post graphic demonstrates a judicious mapping of data to
visuals, underpinned by a close appreciation of the analysis context. The act
of carefully considering how best to leverage visual systems given the available
data and analysis priorities is key to designing effective data graphics. Leland
Wilkinson’s Grammar of Graphics (1999) captures this process of turning
data into visuals. Wilkinson’s (1999) thesis is that graphics can be described
in a consistent way according to their structure and composition. This has
obvious benefits for building visualization toolkits. If different chart types and
combinations can be reduced to a common vocabulary and grammar, then
the process of designing and generating graphics of different types can be
systematised.

Wilkinson’s (1999) grammar separates the construction of data graphics into a
series of components. Below are the components of the Layered Grammar of
Graphics on which ggplot2 is based (Wickham 2010), adapted from Wilkinson’s
(1999) original work. The components in Figure 3.2 are used to assemble
geplot2 specifications. Those to highlight at this stage are in emphasis: the
data containing the variables of interest, the marks used to represent data
and the visual channels through which variables are encoded.

To demonstrate this, let’s generate some scatterplots based on the 2019 General
Election data. Two variables worth exploring for association here are: con_1719,
the change in Conservative vote share by constituency between 2017-2019, and
leave_hanretty, the size of the Leave vote in the 2016 EU referendum, estimated
at Parliamentary Constituency level (via Hanretty 2017).

In Figure 3.3 are three plots, accompanied by ggplot2 specifications used to
generate them. Reading the graphics and the associated code, you should get
a feel for how ggplot2 specifications are constructed:

1. Start with a data frame, in this case 2019 General Election results for
UK Parliamentary Constituencies. The data are passed to ggplot2
(ggplot()) using the pipe operator (|>). Also at this stage, we consider
the variables to encode and their measurement type — both con_1719
and leave_hanretty are ratio scale variables.

44 8 Visualization Fundamentals

Figure 3.1: Map of 2016 US presidential election results. Note that for
copyright reasons this is a re-implementation in ggplot2 of Gamio and Keating’s
(2016) original, which appeared in The Washington Post.

3.2 Concepts 45

Figure 3.2: Components of Wickham’s (2010) Layered Grammar of Graphics.

2. Next is the encoding (mapping=aes()), which determines how the data
are to be mapped to visual channels. In a scatterplot, horizontal
and vertical position varies in a meaningful way, in response to the
values of a dataset. Here the values of 1leave_hanretty are mapped
along the x-axis, and the values of con_1719 are mapped along the
y-axis.

3. Finally, we represent individual data items with marks using the
geom_point() geometry.

In the middle plot, the grammar is updated such that the points are coloured
according to winning_party, a variable of type categorical nominal. In the bottom
plot constituencies that flipped from Labour-to-Conservative between 2017-19
are emphasised by varying the shape (filled and not filled) and transparency
(alpha) of points.

3.2.3 Marks and visual channels

In our descriptions marks was used as an alternative term for geometry and
visual encoding channels as an alternative for aesthetics. We also paid special
attention to the data types that were encoded. Marks are graphical elements
such as bars, lines, points and ellipses that can be used to represent data
items. In ggplot2 marks are accessed through the function layers prefaced with
geom_x(). Visual channels are attributes such as colour, size and position that,
when mapped to data, affect the appearance of marks in response to the values
of a dataset. These attributes are controlled via the aes() (aesthetics) function
in ggplot2.

Marks and channels are terms used routinely in Information Visualization, an
academic discipline devoted to the study of data graphics, and most notably
by Tamara Munzner (2014) in her textbook Visualization Analysis and Design.
Munzner’s (2014) work synthesises over foundational research in Information
Visualization and Cognitive Science testing how effective different visual chan-
nels are at supporting specific tasks. Figure 3.4 is adapted from Munzner (2014)
and lists the main visual channels with which data might be encoded. The
grouping and order of the figure is meaningful. Channels are grouped according

46 8 Visualization Fundamentals

Figure 3.3: Plots, grammars and underlying ggplot2 specifications for the
scatterplot.

to the tasks to which they are best suited and then ordered according to
their effectiveness at supporting those tasks. The left grouping displays magni-
tude:order channels — those that are best suited to tasks aimed at quantifying
data items. The right grouping displays identity:category channels — those that
are most suited to supporting tasks that involve isolating and associating data
items.

3.2.4 Evaluating designs

The effectiveness rankings of visual channels in Figure 3.4 are not simply based
on Munzner’s preference. They are informed by detailed experimental work
by Cleveland and McGill (1984), later replicated by Heer and Bostock (2010),

3.2 Concepts 47

Figure 3.4: Visual channels to which data items can be encoded, adapted
from Munzner (2014).

which involved conducting controlled experiments testing people’s ability to
make judgements from graphical elements. We can use Figure 3.4 to help make
decisions around which data item to encode with which visual channel. This
is particularly useful when designing data-rich graphics, where several data
items are to be encoded simultaneously. Figure 3.4 also offers a low cost way
of evaluating different designs against their encoding effectiveness.

To illustrate this, we can use Munzner’s ranking of channels to evaluate The
Washington Post graphic discussed in Figure 3.1. Table 3.2! provides a sum-
mary of the encodings used in the graphic. US counties are represented using a
peak-shaped mark. The key purpose of the graphic is to depict the geography
of voting outcomes. The most effective quantitative channel — position on an
aligned scale — is used to order the county marks with a geographic arrange-
ment. With the positional channels taken, the two quantitative measures are
encoded with the next highest ranked channel, length or 1D size: height varies
according to number of total votes cast and width according to margin size.
The marks are additionally encoded with two categorical variables: whether
the county-level result was a landslide and also the winning party. Since the
intention is to give greater visual saliency to counties that resulted in a land-
slide, this is an ordinal variable encoded with a quantitative channel: area /
2D size. The winning party, a categorical nominal variable, is encoded using
colour hue.

Each of the encoding choices follow conventional wisdom in that data items
are encoded using visual channels appropriate to their measurement level.

l@tbl-wp-eval-size-tex

48 8 Visualization Fundamentals

Table 3.1: Encoding effectiveness for Gamio and Keating’s (2016) Washington
Post graphic that emphasises vote margin and size of counties using triangle
marks.

Data item
Magnitude:Order

Type | Channel | Rank

County location | interval | position in x,y | 1. quant

Total votes cast | ratio length 3. quant

Margin size ratio length 3. quant

Is landslide ordinal | area 5. quant
Identity:Category

Winning party | nominal | colour hue [2. cat

Glancing down the “rank” column, the graphic has high effectiveness. While
technically spatial region is the most effective channel for encoding nominal
data, it is already in use as the marks are arranged by geographic position.
Additionally, it makes sense to distinguish Republican and Democrat wins
using the colours with which they are always represented. Given the fact that
the positional channels represent geographic location, length to represent votes
cast and vote margin, the only superior visual channel to 2D area that could
be used to encode the landslide variable is orientation. There are very good
reasons for not varying the orientation of the arrow marks. Most obvious is
that this would undermine perception of length encodings used to represent
the vote margin (width) and absolute vote size (height).

1 Visualization design and trade-offs

Data visualization design almost always involves trade-offs. A general
principle is to identify and prioritise data and analysis tasks, then match
the most effective encodings to the data and tasks that have the greatest
priority. Less important data items and tasks therefore get less effective
encodings. In practice, visualization design involves exercising more
creative thinking — it is sometimes preferable to defy convensional wisdom
in order to provoke some desired response. Either way, good visualization
design is sensitive to this interplay between tasks, data and encoding.

3.2.5 Symbolisation

“Symbolization is the process of encoding something with mean-
ing in order to represent something else. Effective symbol de-
sign requires that the relationship between a symbol and the

3.2 Concepts 49

information that symbol represents (the referent) be clear and
easily interpreted.”

White (2017)

Implicit in the discussion above, and when making design decisions, is the impor-
tance of symbolisation. From the original Washington Post article, the overall
pattern that can be discerned is of population-dense coastal and metropolitan
counties voting Democrat — densely-packed, tall, wide and blue /\ marks —
contrasted with population-sparse rural and small town areas voting Republi-
can — short, wide and red A marks. The graphic evokes a distinctive landscape
of voting behaviour, emphasised by its caption: “The peaks and valleys of
Trump and Clinton’s support”.

Symbolisation is used equally well in a variant of the graphic emphasising
two-party Swing between the 2012 and 2016 elections (Figure 3.5). Each
county is represented as a | mark. The Swing variable is then encoded by
continuously varying mark angles: counties swinging Republican are angled
to the right /; counties swinging Democrat are angled to the left \. Although
angle is a less effective channel at encoding quantities than is length, there
are obvious links to the political phenomena in the symbolisation — angled
right for counties that moved to the right politically. There are further useful
properties in this example. Since county voting is spatially auotocorrelated,
we quickly assemble from the graphic dominant patterns of Swing to the
Republicans (Great Lakes, rural East Coast), predictable Republican stasis
(the Midwest) and more isolated, locally exceptional swings to the Democrats
(rapidly urbanising counties in the deep South).

Task 1

Complete the description table below to identify each data item encoded
in Figure 3.5 along with its measurement level, visual mark and visual
channel and the effectiveness rank of this encoding, according to Munzner
(2014).

Measurement Visual Visual
Data item level mark channel Rank
County <enter here> <enter <enter here> <enter

location here> here>

50 8 Visualization Fundamentals

Figure 3.5: Map of swing in 2016 US presidential election results. Note that
for copyright reasons this is a re-implementation in ggplot2 of Gamio and
Keating’s (2016) original, which appeared in The Washington Post.

3.8 Techniques 51

3.2.6 Colour

Colour is a very powerful visual channel. When considering how to encode
data with colour, it is helpful to consider three properties:

e Hue: what we generally refer to as “colour” in everyday life — red, blue, green.
e Saturation: how much of a colour there is.
o Luminance/Brightness: how dark or light a colour is.

The ultimate rule is to use these properties of colour in a way that matches
the properties of the data (Figure 3.6). Categorical nominal data — data that
cannot be easily ordered — should be encoded using discrete colours with no
obvious order; so colour hue. Categorical ordinal data — data whose categories
can be ordered — should be encoded with colours that contain an intrinsic
order; saturation or brightness (colour value) allocated into perceptually-spaced
gradients. quantitative data — data that can be ordered and contain values
on a continuous scale — should also be encoded with saturation or brightness,
expressed on a continuous scale. As we will discover shortly, these principles are
applied by default in ggplot2, along with access to perceptually valid schemes
(e.g. Harrower and Brewer 2003).

Figure 3.6: Colour schemes matched to variable measurement level.

°
1 On colour

There are very many considerations when using colour to support visual
data analysis and communication — more than we have space for in
this chapter. Lisa Charotte-Muth’s (2018) Guide to Colours in Data
Visualization? is an excellent outline of the decision-space.

3.3 Techniques

The technical component to this chapter analyses data from the 2019 UK Gen-
eral Election, reported at Parliamentary Constituency level. After importing
and describing the dataset, we will generate data graphics that expose patterns
in voting behaviour.

2https: //blog.datawrapper.de/colorguide/

https://blog.datawrapper.de/colorguide/

52 8 Visualization Fundamentals

o Download the e3-template.qmd® file for this chapter and save it to your vis4sds
project.

e Open your visasds project in RStudio and load the template file by clicking
File > Open File ... > 03-template.qgmd.

3.3.1 Import

The template file lists the required packages — tidyverse and sf — and links to
the 2019 UK General Election dataset, stored on the book’s accompanying data
repository. These data were initially collected via the partlitools R package,
which is no longer maintained.

The data frame of 2019 UK General Election data is called bes_2019. This
stores results data released by the House of Commons Library (Uberoi,
Baker, and Cracknell 2020). We can get a quick overview with a call to
glimpse (<dataset-name>). bes_2019 has 650 rows, one for each parliamentary con-
stituency, and 118 columns. In the columns are variables reporting vote numbers
and shares for the main political parties for the 2019 and 2017 General Elec-
tions, as well as names and codes (1ps) for each constituency and the local
authority, region and country in which they are contained.

We will replicate some of the visual data analysis in Beecham (2020). For this
we need to calculate an additional variable, Butler Swing (Butler and Van Beek
1990): the average change in share of the vote won by two parties contesting
successive elections. Code for calculating this variable, named swing_con_lab, is
in the 03-template.qmd. The only other dataset to load is a .geojson file containing
simplified geometries of constituencies, originally from ONS Open Geography
Portal. This is a special class of data frame containing a Simple Features
(Pebesma 2018) geometry column.

3.3.2 Summarise

You may be familiar with the result of the 2019 General Election, a landslide
Conservative victory that confounded expectations. To start, we can quickly
compute some summary statistics around the vote. In the code below, we
count the number of seats won and overall vote share by party. For the vote
share calculation, the code is a little more elaborate than we might wish at
this stage. We need to reshape the data frame using pivot_wider() such that
each row represents a vote for a party in a constituency. From here the vote
share for each party can be easily computed.

Number of constituencies won by party.
bes_2019 |>

3http5: //vis4sds.github.io/vis4sds/files/03-template.qmd

https://vis4sds.github.io/vis4sds/files/03-template.qmd

3.3

Techniques

group_by(winner_19) |>

summarise(count=n()) |>

arrange(desc(count))
A tibble: 11 x 2

winner_19 count
##t <chr> <int>
1 Conservative 365
2 Labour 202
3 Scottish National Party 48
4 Liberal Democrat 11
5 Democratic Unionist Party 8
6 Sinn Fein 7
7 Plaid Cymru 4
8 Social Democratic & Labour Party 2
9 Alliance 1
10 Green 1
11 Speaker 1

Share of vote by party.
bes_2019 |>

Select cols containing vote counts by party.

select(

constituency_name, total_vote_19,

con_vote_19:alliance_vote_19,

)

Pivot to make each row a vote for a party in a constituency.

|>

pivot_longer(

cols=con_vote_19:alliance_vote_19,

names_to="party", values_to="votes"

)

|>

region

Use some regex to pull out party name.

mutate(party=str_extract(party, "["_1+")) |>

Summarise over parties.

group_by(party) |>

Calculate vote share for each party.
summarise(vote_share=sum(votes, na.rm=TRUE)/sum(total_vote_19))

Arrange parties descending on vote share.

arrange(desc(vote_share))

A tibble: 12 x 2

#it party vote_share
#i#t <chr> <dbl>
1 con 0.436
2 lab 0.321

|>

53

54 8 Visualization Fundamentals

3 ld 0.115

4 snp 0.0388
5 green 0.0270
6 brexit 0.0201
7 dup 0.00763
8 sf 0.00568
9 pc 0.00479
10 alliance 0.00419
11 sdlp 0.00371
12 uup 0.00291

While the Conservative party held 56% of constituencies in 2019 election, they
won only 44% of the vote. The equivalent figures for Labour were 31% and 32%
respectively. And although the Conservatives gained many more constituencies
than they did in 2017 (when they won just 317, 49% of constituencies) their
vote share hardly shifted between those elections — in 2017 the Conservative
vote share was 43%. This fact is interesting as it may suggest some movement
in where the Conservative party gained its majorities in 2019.

Below are some summary statistics computed over the newly created
swing_con_lab variable. As the Conservative and Labour votes are negligible in
Northern Ireland, it makes sense to focus on Great Britain for our analysis
of Conservative-Labour Swing, and so the first step in the code is to create a
new data frame filtering out Northern Ireland.

data_gb <- bes_2019 |>

filter(region != "Northern Ireland") |>

Also recode to 0 Chorley and Buckingham, incoming/outgoing speaker.

mutate(

swing_con_lab=1if_else(

constituency_name %in% c("Chorley", "Buckingham"), 0,
0.5x((con_19-con_17)-(lab_19-1ab_17))
)

data_gb |>
summarise(

min_swing=min(swing_con_lab),
max_swing=max (swing_con_lab),
median_swing=median(swing_con_lab),
num_swing=sum(swing_con_lab>0),
num_landslide_con=sum(con_19>50, na.rm=TRUE),
num_landslide_lab=sum(lab_19>50, na.rm=TRUE)
)

3.8 Techniques 55

A tibble: 1 x 6

min_swing max_swing median_swing num_swing num_land_con num_land_lab
<dbl> <dbl> <dbl> <int> <int> <int>
1 -6.47 18.4 4.44 590) 280 120

3.3.3 Plot distributions

Figure 3.7: Histograms of Butler two-party Labour-Conservative Swing.

Let’s start with ggplot2 specifications by plotting some of these variables.
Below is the code for plotting a histogram of the Swing variable.

data_gb |>
ggplot(mapping=aes(swing_con_lab)) +

geom_histogram()

A reminder of the general form of a ggplot2 specification:

1. Start with some data: data_gb.

2. Define the encoding: mapping=aes() into which we pass the
swing_con_lab variable.

3. Specify the marks to be used: geom_histogram() in this case.

Different from the scatterplot example, there is more happening in the internals
of ggplot2 when creating a histogram. The Swing variable is partitioned into
bins, and observations in each bin are counted. The x-axis (bins) and y-axis
(counts by bin) are derived from the swing_con_lab variable.

56 8 Visualization Fundamentals

By default the histogram’s bars are given a grey colour. To set them to a
different colour, add a fill= argument to geom_histogram(). In the code block
below, colour is set using hex codes. The term set, not map or encode, is
used for principled reasons. Any part of a ggplot2 specification that involves
encoding data — mapping a data item to a visual channel — should be specified
through the mapping=aes() argument. Anything else, for example changing the
default colour, thickness and transparency of marks, needs to be set outside of
this argument.

data_gb |>
ggplot(mapping=aes(swing_con_lab)) +
geom_histogram(fill="#003c8f") +

labs(x="Swing", y="count")

You will notice that different elements of a ggplot2 specification are added (+) as
layers. In the example above, the additional layer of labels (labs()) is not intrin-
sic to the graphic. However, often you will add layers that do affect the graphic
itself. For example, the scaling of encoded values (e.g. scale_*_continuous()) or
whether the graphic is to be conditioned on another variable to generate small
multiples for comparison (e.g. facet_x()). Adding a call to facet_x(), we can
compare how Swing varies by region (Figure 3.8). The plot is annotated with
the median value for Swing (4.4) by adding a vertical line layer (geom_vline())
set with an x-intercept at this median value. From this, there is some evi-
dence of a regional geography to the 2019 vote: London and Scotland are
distinctive in containing relatively few constituencies swinging greater than
the expected midpoint; North East, Yorkshire & The Humber, and to a lesser
extent West and East Midlands, appear to show the largest relative number of
constituencies swinging greater than the midpoint.

Task 2

Update the earlier ggplot2 specification to produce a set of histograms
of the Swing variable faceted by region, similar to that in Figure 3.8.

3.3.4 Plot ranks/magnitudes

Previously we calculated overall vote shares by political party. We could
continue the exploration of votes by region, re-using this code to generate plots
displaying vote shares by region, using marks and encoding channels that are
suitable for magnitudes.

To generate a bar chart similar to Figure 3.9 the ggplot2 specification would
be:

3.8 Techniques

Figure 3.8: Histograms of Swing variable, grouped by region.

Figure 3.9: Plots of vote shares by party.

data_gb |>
The code block summarising vote by party.
<some dplyr code> |>
Ordinal x-axis (party, reordered), Ratio y-axis (vote_share).
ggplot(aes(x=reorder(party, -vote_share), y=vote_share)) +
geom_col(fill="#003c8f") +
coord_flip()

A quick breakdown of the specification:

1. Data: This is the summarised data frame in which each row is a
political party, and the column describes the vote share recorded for
that party.

57

58 8 Visualization Fundamentals

2. Encoding: We have dropped the call to mapping=. ggplot2 always
looks for aes(), and so we can save on code clutter. In this case
we are mapping party to the x-axis, a categorical variable made
ordinal by the fact that we reorder the axis left-to-right descending
on vote_share. vote_share is mapped to the y-axis — so encoded using
bar length on an aligned scale, an effective channel for conveying
magnitudes.

3. Marks: geom_col() for generating the bars.

4. Setting: Again, we've set bar colour to manually selected dark blue.
Optionally we add a coord_flip() layer in order to display the bars
horizontally. This makes the category axis labels easier to read and
also seems more appropriate for the visual “ranking” of bars.

Figure 3.10: Plots of vote shares by party and region.

Faceting by region

In Figure 3.10 the graphic is faceted by region. This requires an updated
staged dataset grouping by vote_share and region and of course a faceting layer
(geom_facet(~region)). The graphic is more data-rich, and additional cognitive
effort is required in relating the political party bars between different graphi-
cal subsets. We can assist this associative task by encoding parties with an
appropriate visual channel: colour hue. The ggplot2 specification for this is as
you would expect; we add a mapping to geom_col() and pass the variable name
party to the fill argument (aes(f'i 'Ll:party)).

3.8 Techniques 59

data_gb |>
The code block summarising vote by party and also now region.
<some dplyr code> |>
To be piped to ggplot2.
ggplot(aes(x=reorder(party, vote_share), y=vote_share)) +
geom_col(aes(fill=party)) +
coord_flip() +

facet_wrap(~region)

Trying this for yourself, you will observe that the ggplot2 internals do some
thinking for us. Since party is a categorical variable, a categorical hue-based
colour scheme is automatically applied. Try passing a quantitative variable
(fill=vote_share) to geom_col() and see what happens; a quantitative colour
gradient scheme is applied.

Clever as this is, when encoding political parties with colour, symbolisation
is important. It makes sense to represent political parties using colours with
which they are most commonly associated. We can override ggplot2’s default
colour by adding a scale_fill_manual() layer into which a vector of hex codes
describing the colour of each political party is passed (party_colours). We also
need to tell ggplot2 which element of party_colours to apply to which value of
the party variable. In the code below, a staging table is generated summarising
vote_share by political party and region. In the final line the party variable is
recoded as a factor. You might recall from the last chapter that factors are
categorical variables of fixed and orderable values — levels. The call to mutate()
recodes party as a factor variable and orders the levels according to overall
vote share.

Generate staging data.
temp_party_shares_region <- data_gb |>
select(
constituency_name, region, total_vote_19,
con_vote_19:alliance_vote_19
) >
pivot_longer (
cols=con_vote_19:alliance_vote_19,
names_to="party", values_to="votes"
E
mutate(party=str_extract(party, "["_1+")) |>
group_by(party, region) |>
summarise(vote_share=sum(votes, na.rm=TRUE)/sum(total_vote_19)) |>
filter(
party %in% c("con", "lab", "1d", "snp", '"green", "brexit", "pc")

) 1>

60 8 Visualization Fundamentals

mutate(party=factor(party,

levels=c("con", "lab", "1d", "snp", "green", "brexit", "pc"))

Next, a vector of objects is created containing the hex codes for the colours of
political parties (party_colours).

Define colours.
con <- "#0575c9"
lab <- "#edleoe"

1d <- "#fe8300"

snp <- '"#ebc31lc"
green <- "#78c31le"
pc <- "#4e9f2f"
brexit <- "#25bé6ce"
other <- "#bdbdbd"

party_colours <- c(con, lab, 1d, snp, green, brexit, pc)

The ggplot2 specification is then updated with the scale_fill_manual() layer:

temp_party_shares_region |>
ggplot(aes(x=reorder(party, vote_share), y=vote_share)) +
geom_col(aes(fill=party)) +
scale_fill_manual(values=party_colours) +
coord_flip() +

facet_wrap(~region)

i Grammar of Graphics-backed visualization toolkits

The idea behind visualization toolkits such as ggplot2 is to insert visual
approaches into a data scientist’s workflow. Rather than being overly
concerned with low-level aspects of drawing, mapping data values to
screen coordinates and scaling factors, you instead focus on aspects
relevant to the analysis — the variables in a dataset and how they will be
encoded and conditioned using visuals. Hadley Wickham talks about a
grammar of interactive data analysis, whereby dplyr functions are used
to rapidly prepare data for charting before being piped (|>) to ggplot2.

The process of searching for, defining and inserting manual colour schemes
for creating Figure 3.10 might seem inimical to this. There is some reason-
ably involved dplyr and a little regular expression in the data preparation

3.8 Techniques 61

code that you should not be overly concerned with. Having control of
these slightly more low-level properties is, though, sometimes necessary
even for exploratory analysis, in this case for effecting symbolisation that
supports comparison.

3.3.5 Plot relationships

Figure 3.11: Plots of 2019 versus 2017 vote shares.

To continue the investigation of change in votes for the major parties between
2017 and 2019, Figure 3.11 contains a scatterplot of Conservative vote share
in 2019 (y-axis) against vote share in 2017 (x-axis). The graphic is annotated
with a diagonal line. If constituencies voted in 2019 in exactly the same way
as 2017, the points would converge on the diagonal. Points above the diagonal
indicate a larger Conservative vote share than 2017, those below the diagonal
a smaller Conservative vote share than 2017. Points are coloured according
to the winning party in 2019, and constituencies that flipped from Labour to
Conservative are emphasised using transparency and shape.

The code for generating most of the scatterplot in Figure 3.11 is below.

data_gb |>
mutate(winner_19=case_when(
winner_19 == "Conservative" ~ "Conservative",

winner_19 == "Labour" ~ "Labour",

62 8 Visualization Fundamentals

TRUE ~ "Other"
) >
ggplot(aes(x=con_17, y=con_19)) +
geom_point(aes(colour=winner_19), alpha=.8) +
geom_abline(intercept = 0, slope = 1) +

scale_colour_manual(values=c(con,lab,other)) +

There is little surprising here:

1. Data: The data_gb data frame. Values of winner_19 that are not Con-
servative or Labour are recoded to Other using a conditional state-
ment. This is to ease and narrow the comparison to the two major
parties.

2. Encoding: Conservative vote shares in 2017 and 2019 are mapped
to the x- and y- axes respectively and winner_19 to colour.
scale_colour_manual() is used for customising the colours.

3. Marks: geom_point() for generating the points of the scatterplot;
geom_abline() for drawing the reference diagonal.

Task 3

The code block above doesn’t exactly reproduce the graphic in Figure 3.11.
Try updating the ggplot2 specification to emphasise constituencies that
flipped from Labour to Conservative.

Hint: you may wish to generate a variable recording constituencies that
flipped between 2017 and 2019 and encode some visual channel in the
graphic on this.

3.3.6 Plot geography

The data graphics above suggest that the composition of Conservative and
Labour voting may be shifting. Paying attention to the geography of voting,
certainly to changes in voting between 2017 and 2019 elections (e.g. Figure 3.8),
may therefore be instructive. We end the technical component to the chapter
by generating thematic maps of the results data.

To do this we need to generate a join on the boundary dataset loaded at the
start of this technical section (cons_outline):

Join constituency boundaries.

data_gb <- cons_outline |>

3.8 Techniques 63

Figure 3.12: Choropleth of elected parties in 2019 General Election.

inner_join(data_gb, by=c("pcon21lcd"="ons_const_id"))
Check class.
[1] "sf" "data. frame"

The code for generating the choropleth maps of winning party by constituency
in Figure 3.12:

Recode winner_19 as a factor variable for assigning colours.
data_gb <- data_gb |>
mutate(
winner_19=1f_else(winner_19=="Speaker", "Other", winner_19),
winner_19=factor (winner_19, levels=c("Conservative", "Labour",
"Liberal Democrat", "Scottish National Party", "Green",
"Plaid Cymru'", "Other"))
)
party_colours <- c(con, lab, ld, snp, green, pc, other)
Plot map.
data_gb |>
ggplot() +
geom_sf (aes(fill=winner_19), colour="#eeeeee", linewidth=0.01) +
Optionally add a layer for regional boundaries.
geom_sf(data=. %>% group_by(region) %>% summarise(),

colour="#eeeeee", fill="transparent", linewidth=0.08) +

64 8 Visualization Fundamentals

coord_sf(crs=27700, datum=NA) +

scale_fill_manual(values=party_colours)

A breakdown of the ggplot2 spec:

1. Data: Update data_gb by recoding winner_19 as a factor and defining
a named vector of colours to supply to scale_fill_manual(). Note that
we also use the party_colours object created for the region bar chart.

2. FEncoding: No surprises here — fi1l according to winner_19.

3. Marks: geom_sf() is a special class of geometry. It draws objects
using the contents of a simple features data frame’s (Pebesma 2018)
geometry column. In this case muLTIPOLYGON, so read this as a polygon
shape primitive.

4. Coordinates: coord_sf — we set the coordinate system (CRS) explicitly.
In this case OS British National Grid.

5. Setting: Constituency boundaries are subtly introduced by setting
the geom_sf() mark to light grey (colour="#eeeeee") with a thin outline
(Linewidth=0.01). On the map to the right, outlines for regions are
added as another geom_sf() layer. Note how this is achieved in the
second geom_sf(). The data_gb dataset initially passed to ggplot2
(identified by the . mark) is collapsed by region (with group_by() and
summarise()) and in the background the boundaries in geometry are
aggregated by region.

1 Preparing data for plotting

A general point from the code blocks in this chapter is that proficiency in
dplyr and tidyr is a necessity. Throughout the book you will find yourself
needing to calculate new variables, recode variables and reorganise data
frames before handing them over to ggplot2 for plotting.

In the third map of Figure 3.12 the transparency (alpha) of filled constituencies
is varied according to the Swing variable. This demonstrates that constituencies
swinging most dramatically for Conservative (darker colours) are in the mid-
lands and North of England and not in London and the South East. The pattern
is nevertheless a subtle one; transparency (colour luminance / saturation) is
not a highly effective visual channel for encoding quantities.

It may be worth applying the same encoding to Butler two-party swing as that
used in the Washington Post graphic when characterising Republican-Democrat
swing in 2016 US Elections (e.g. Beecham 2020). This can be achieved by simply
adding another ggplot2 layer, though the code is a little more involved. ggplot2’s
geom_spoke () primitive draws line segments parameterised by a location (x- y-
position) and angle. With this we can encode constituencies with | marks that

3.8 Techniques 65

angle to the right / where the constituency swings towards Conservative and
to the left where it swings towards Labour \. This encoding better exposes the
pattern of constituencies forming Labour’s “red wall” in the north of England,
as well as parts of Wales and the Midlands flipping to Conservative.

Figure 3.13: Map of Butler Con-Lab Swing in 2019 General Election.
The ggplot2 specification:

Find the maximum Swing values to pin the min and max angles to.
max_shift <- max(abs(data_gb |> pull(swing_con_lab)))

min_shift <- -max_shift

Re-define party_colours to contain just three values: hex codes for
Conservative, Labour and Other.
party_colours <- c(con, lab, other)

names (party_colours) <- c("Conservative'", "Labour'", "Other")

Plot Swing map.
data_gb |>
mutate(

is_flipped=seat_change_1719 %in%

66 8 Visualization Fundamentals

c("Conservative gain from Labour",
"Labour gain from Conservative"),
elected=1if_else(!winner_19 %in% c("Conservative", "Labour"), "Other",
as.character (winner_19)),
swing_angle=

get_radians(map_scale(swing_con_lab,min_shift,max_shift,135,45)

)
) >
ggplot()+

geom_sf(aes(fill=elected), colour="#636363", alpha=.2, linewidth=.01)+
geom_spoke (

aes(x=bng_e, y=bng_n, angle=swing_angle, colour=elected,

linewidth=1is_flipped),

radius=7000, position="center_spoke"

)+
coord_sf(crs=27700, datum=NA)+
scale_linewidth_ordinal(range=c(.2,.5))+
scale_colour_manual(values=party_colours)+

scale_fill_manual(values=party_colours)

A breakdown:

1. Data: data_gb is updated with a Boolean (Trug/FaLse) variable iden-
tifying whether or not the constituency flipped between successive
elections (is_flipped), and a variable simplifying the party elected to
either Conservative, Labour or Other. swing_angle contains the angles
used to orient the line marks. A convenience function (map_scale())
pins the maximum swing values to 45 degrees and 135 degrees —
respectively max swing to the right, Conservative and max swing to
the left, Labour.

2. Encoding: geom_sf() is again filled by elected party. This encoding
is made more subtle by adding transparency (alpha=.2). geom_spoke ()
is mapped to the geographic centroid of each Constituency (bng_e -
easting, bng_n - northing), coloured on elected party, sized on whether
the constituency flipped its vote and tilted or angled according to
the swing_angle variable.

3. Marks: geom_sf() for the constituency boundaries, geom_spoke() for
the angled line primitives.

4. Scale: geom_spoke() primitives are sized to emphasise whether con-
stituencies have flipped. The size encoding is censored to two values
with scale_linewidth_ordinal(). Passed to scale_colour_manual() and
scale_fill_manual() is the vector of party_colours.

5. Coordinates: coord_stf — the CRS is OS British National Grid, so

3.8 Techniques 67

we define constituency centroids using easting and northing planar
coordinates.

6. Setting: The radius of geom_spoke() lines is a sensible default arrived
at through trial and error, its position set using a newly created
center_spoke class.

There are helper functions that must also be run to execute the ggplot2
code above correctly. In order to position lines using geom_spoke() centred on
their x- y- location, we need to create a custom ggplot2 subclass. Details
are in the e3-template.qmd file. Again, this is somewhat involved for a chapter
introducing ggplot2 for analysis. Nevertheless, hopefully you can see from the
plot specification above that the principles of mapping data to visuals can
be implemented straightforwardly in ggplot2: line marks for constituencies
(geom_spoke ()), positioned in x and y according to British National Grid easting
and northings and oriented (angle) according to two-party Swing.

Dot-density maps

A common design challenge when presenting population data spatially is to
accurately reflect geography at the same time as the quantitative outcome of
interest — in this case, the location and shape of constituencies versus their
associated vote sizes. You may be familiar with cartogram layouts used in
electoral analysis. They are maps that distort geographic space in order to size
constituencies according to the voting population rather than their physical
area. Dot-density maps also convey absolute numbers of votes but in a way that
preserves geography. In the example below, each dot represents 1,000 votes for
a given party — Conservative, Labour, Other — and dots are positioned in the
constituencies from which those votes were made. Dots therefore concentrate
in population-dense areas of the country.

The difficulty in generating dot-density maps is not wrangling ggplot2, but
in preparing data to be plotted. We need to create a randomly located point
within a constituency’s boundary for every thousand votes that are made there.
R packages specialised to dot-density maps provide functions for doing this, but
it is quite easy to achieve using the sorts of functional and tidyverse-style code
introduced throughout this book. We include the code for Figure 3.14 directly
below the plot. While compact, there are some quite advanced functional
programming concepts (in the use of purrr::map()) that we do not explain.
These concepts are in fact covered in some detail and with proper description
in later chapters of the book.

Collect 2019 GE data from which dots are approximated.
vote_data <- bes_2019 |>
filter (ons_const_id!="S14000051") |>

mutate(

68 8 Visualization Fundamentals

Figure 3.14: Dot density map of 2019 General Election result.

other_vote_19=total_vote_19-(con_vote_19 + lab_vote_19)
E
select(
ons_const_id, constituency_name, region, con_vote_19,
lab_vote_19, other_vote_19
E
pivot_longer(
cols=con_vote_19:other_vote_19,
names_to="party", values_to="votes"
E
mutate(
party=str_extract(party, "["_1+"),
votes_dot=round(votes/1000,0)
) 1>
filter(!is.na(votes_dot))

Sample within constituency polygons.

3.8 Techniques 69

This might take a bit of time to execute.
start_time <- Sys.time()
sampled_points <-
cons_outline |>
select(geometry, pcon2lcd) |> filter(pcon2lcd!="S14000051") |>
inner_join(
vote_data |> group_by(ons_const_id) |>
summarise(votes_dot=sum(votes_dot)) |> ungroup(),
by=c("pcon21lcd"="ons_const_id")
) >
nest(data=everything()) |>
mutate(
sampled_points=map(data,
~sf:ist_sample(
Xx=.x, size=.x$votes_dot, exact=TRUE, type="random"
) |> st_coordinates() |>
as_tibble(.name_repair=~c("east", "north"))),
const_id=map(data, ~.x |> st_drop_geometry() |>
select(pcon2lcd, votes_dot) |> uncount(votes_dot))
) [>
unnest(-data) |>
select(-data)
end_time <- Sys.time()
end_time - start_time
point_votes <- vote_data |> select(party, votes_dot) |[>
uncount(votes_dot)

sampled_points <- sampled_points |> bind_cols(point_votes)

Plot sampled points.
party_colours <- c(con, lab, other)
sampled_points |>
ggplot() +
geom_sf(
data=cons_outline, fill="transparent",
colour="#636363", linewidth=.03
) +
geom_sf(data=cons_outline |>
inner_join(vote_data, by=c("pcon2lcd"="ons_const_id")) |>
group_by(region) |> summarise(),
fill="transparent", colour="#636363", linewidth=.1) +
geom_point(
aes(x=east,y=north, fill=party, colour=party),
alpha=.5, size=.6, stroke=0

)+

70 8 Visualization Fundamentals

scale_fill_manual(values=party_colours, "1 dot = 1,000 votes'")+
scale_colour_manual(values=party_colours, "1 dot = 1,000 votes")+
guides(colour=guide_legend(override.aes=list(size=3)))+
theme_void()

3.4 Conclusions

Visualization design is ultimately a process of decision-making. Data must
be filtered and prioritised before being encoded with marks, visual channels
and symbolisation. The most successful data graphics are those that expose
structure, connections and comparisons that could not be achieved easily via
other, non-visual means. This chapter has introduced concepts — a vocabulary,
framework and empirically-informed guidelines — that help support this decision-
making and that underpin modern visualization toolkits, ggplot2 especially.
Through an analysis of UK 2019 General Election data, we have demonstrated
how these concepts can be applied in a real data analysis.

3.5 Further Reading

For a primer on visualization design principles:

e Munzner, T. 2014. “Visualization Analysis and Design”, Boca Raton, FL:
CRC Press.

A paper presenting evidence-backed guidelines on visualization design, aimed
at applied researchers:

e Franconeri S. L., Padilla L. M., Shah P., Zacks J. M., Hullman J. (2021). “The
science of visual data communication: What works”. Psychological Science in

the Public Interest, 22(3), 110-161. doi: 10.1177/15291006211051956.

For an introduction to ggplot2 and its relationship with Wilkinson’s (1999)
grammar of graphics:

o Wickham, H., Cetinkaya-Rundel, M., Grolemund, G. 2023, “R for Data
Science, 2nd Edition”, Sebastopol, CA: O’Reilly.
— Chapters 2, 10.

Excellent paper looking at consumption and impact of election forecast visual-
izations:

https://doi.org/10.1177/15291006211051956

3.5 Further Reading 71

e Yang, F. et al. 2024. “Swaying the Public? Impacts of Election Forecast

Visualizations on Emotion, Trust, and Intention in the 2022 U.S. Midterms.”

IEEE Transactions on Visualization and Computer Graphics, 30(1), 23-33.
doi: 10.1109/TVCG.2023.3327356.

https://doi.org/10.1109/TVCG.2023.3327356

https://www.taylorandfrancis.com

4

Exploratory Data Analysis

By the end of this chapter you should gain the following knowledge and
practical skills.

Knowledge outcomes

O Understand how data graphics can support exploratory data analysis
(EDA).

[0 The main chart types, their benefits and drawbacks, for analysing
variation within- and between- variables.

O Three strategies for effecting comparison in EDA — juxtaposition,
superposition and explicit encoding (Gleicher et al. 2011) — and the
role of models in elevating comparisons by codifying expectation.

O Appreciate that EDA is scientific practice: knowledge is developed in
light of data and models.

Skills outcomes

O ggplot2 code that applies encodings and layouts to support comparison.
O tidyverse-style code for calculating model-expected values and residuals.

4.1 Introduction

Exploratory Data Analysis (EDA) is an approach that aims to expose the
properties and structure of a dataset, and from here suggest analysis directions.
In an EDA relationships are quickly inferred, anomalies are labelled, models are
suggested and evaluated. EDA relies heavily on visual approaches to analysis;
it is common to generate many dozens of often throwaway data graphics when
exploring a dataset for the first time.

73

74 4 FEzploratory Data Analysis

This chapter demonstrates how the concepts and principles introduced pre-
viously, of data types and their visual encoding, can be applied to support
EDA. It does so by analysing STATS19, a dataset containing detailed infor-
mation on every reported road traffic crash in Great Britain that resulted in
personal injury. STATS19 is highly detailed, with many categorical variables.
The chapter starts by revisiting commonly used chart types for analysing
within-variable variation and between-variable co-variation in a dataset. It
then focuses more directly on the STATS19 case, and how detailed comparison
across many categorical variables can be effected using colour, layout and
statistical computation.

4.2 Concepts
4.2.1 Exploratory data analysis and statistical graphics

In Exploratory Data Analysis (EDA), graphical and statistical summaries
are used to build knowledge and understanding of a dataset. The goal of
EDA is to infer relationships, identify anomalies and test new ideas and hy-
potheses. Rather than a formal set of techniques, EDA should be considered
a sort of outlook to analysis. It aims to reveal properties, patterns and re-
lationships in a dataset, and from there expectations, codified via models,
to be further investigated in context via more targeted data graphics and
statistics.

The early stages of an EDA may be very data-driven. Datasets are described ab-
stractly according to their measurement level and corresponding data graphics
and summary statistics generated from these descriptions (e.g. Table 4.1). As
knowledge and understanding of the dataset increases, researchers might apply
more targeted theory and prior knowledge when developing and evaluating
models.

Visual approaches play an important role in both these stages of analysis. For
example, when first examining variables according to their shape and location,
data graphics help identify patterns that statistical summaries miss, such as
whether variables are multi-modal, the extent and direction of outliers. When
more specialised models are proposed, graphical summaries can add important
detail around where, and by how much, the observed data depart from the
model. It is for this reason that data visualization is seen as intrinsic to EDA
(John W. Tukey 1977).

4.2 Concepts 75

Table 4.1: A breakdown of statistical and graphical summaries performed in
EDA based on variable measurement types.

Measurement type | Statistic | Chart type
Within-variable variation
Nominal mode | entropy bar charts, dot plots ...
Ordinal median | percentile bar charts, dot plots ...
Continuous mean | variance histograms, box plots, den-
sity plots ...
Between-variable variation
Nominal contingency tables mosaic/spine plots ...
ordinal rank correlation slope/bump charts ...
Continuous correlation scatterplots, parallel coordi-
nate plots ...

4.2.2 Plots for continuous variables
Within-variable variation

Figure 4.1 presents statistical graphics that are commonly used to show
variation in continuous variables measured on a ratio and interval scale. In this
instance, the graphics summarise the age of pedestrians injured (casualty_age)
for a random sample of recorded road crashes.

Figure 4.1: Univariate plots of dispersion in casualty ages from a sample of
pedestrian-vehicle road crashes.

In the left-most column is a strip-plot. Every observation is displayed as a
dot and mapped to y-position, with dots horizontally perturbed and made a
little transparent. Although strip-plots scale poorly, the advantage is that all
observations are displayed without needing to impose some aggregation. It

76 4 FEzploratory Data Analysis

is possible to visually identify the ‘location’ of the distribution — denser dots
towards the youngest ages (c.20 years) — but also that there is spread across
the age values.

Histograms partition observations into equal-range bins, and observations in
each bin are counted. These counts are encoded on an aligned scale using
bar length. Increasing the number of the bins increases the resolution of the
graphical summary. If reasonable decisions are made around choice of bin,
histograms give distributions a shape that is expressive. It is easy to identify
the location of a distribution, to see that it is uni- bi- or multi-modal. Different
from the strip-plot, the histogram shows that despite the heavy spread, the
distribution of casualty_age is right-skewed, and we’d expect this given the
location of the mean (36 years) relative to the median (30 years).

A problem with histograms is the potential for discontinuities and artificial edge-
effects around the bins. Density plots overcome this and can be thought of as
smoothed histograms. They show the probability density function of a variable
— the relative amount of probability attached to each value of casualty_age.
From glancing at the density plots, an overall shape to the distribution can
be immediately derived. It is also possible to infer statistical properties — the
mode of the distribution, the peak density, the mean and median — by a sort of
visual averaging and approximating the midpoint of the area under the curve.

Finally, boxzplots (McGill and Larsen 1978) encode these statistical properties
directly. The box is the interquartile range (IQR) of the casualty_age variable,
the vertical line splitting the box is the median, and the whiskers are placed
at observations < 1.5xIQR. While we lose important information around the
shape of a distribution, boxplots are space-efficient and useful for comparing
many distributions at once.

1 Inequalities in who-hit-whom (by age)

Since the average age of pedestrian road casualties is surprisingly low, it
may be instructive to explore the distribution of casualty_age condition-
ing on another variable differentiated using colour. Figure 4.2 displays
boxplots and density plots of the location and spread in casualty_age by
vehicle and individual for all crashes involving pedestrians. A noteworthy
pattern is that riders of bicycles and motorcycles tend to be younger
than the pedestrians they collide with, whereas for buses, taxis, HGVs
and cars the reverse is true.

4.2 Concepts 7

Figure 4.2: Boxplots of casualty age by vehicle and individual type
(driver or pedestrian).

Between-variable variation

The previous chapter included several scatterplots for exploring associations
in electoral voting behaviour. Scatterplots are used to check whether the
association between variables is linear, but also to make inferences about the
direction and intensity of linear correlation between variables — the extent to
which values in one variable depend on the values of another — and the nature
of variation between variables — the extent to which variation in one variable
depends on another. In an EDA it is common to quickly compare associations
between many quantitive variables in a dataset using scatterplot matrices or,
less often, parallel coordinate plots. There are few variables in the STATS19
dataset measured on a continuous scale, but in Chapter 6 we will use both
scatterplot matrices and parallel coordinate plots when building models that
attempt to structure and explain between-variable covariation, again on an
electoral voting dataset.

4.2.3 Plots for categorical variables
Within-variable variation

For categorical variables, within-variable variation is judged on how relative
frequencies distribute across the variable’s categories. Bar charts are commonly
used, as bar length is effective at encoding frequency. When analysing variation
across several categories, it is useful to flip bar charts on their side so that
category labels can be easily scanned and, unless there is a natural ordering,
arrange the bars in descending order based on their frequency. This is demon-

78 4 FEzploratory Data Analysis

strated in Figure 4.3, which shows the frequencies with which different vehicles
types are involved in pedestrian casualties.

Figure 4.3: Bars displaying crash frequencies by vehicle type.

For summarising frequencies across many categories alternative chart types
that minimise non-data-ink (Tufte 1983), such as dot plots, may be appropriate.
The left plot in Figure 4.4 displays pedestrian crash counts for boroughs in
London, ordered by crash frequency, grouped by whether boroughs are in inner-
or outer- London and coloured on whether crashes took place on weekdays or
weekends. Lines connecting dots emphasise the differences in absolute numbers
between time periods. Although a consistent pattern is of greater crash counts
during weekdays, the gap is less obvious for outer London boroughs; there may
be relatively more pedestrian crashes occurring in central London boroughs
during weekdays. The second graphic is a heatmap with the same ordering
and grouping of boroughs, but with columns coloured according to crash
frequencies by vehicle type, further grouped by weekday and weekend times.
Remembering Munzner’s (2014) ordering of visual channels, we trade-off some
precision in estimation when encoding frequencies in heatmaps. A greater
difficulty, irrespective of encoding channel, comes from the dominance of cars
and weekdays; variation between vehicle types and time periods outside of this
is almost imperceptible.

Between-variable covariation: standardised bars and mosaic plots

In Figure 4.4 we began to make between-category comparison; we asked
whether there are relatively more or fewer crashes by time period or vehicle
type in certain boroughs than others. There are chart types that explicitly
support these sorts of analysis tasks. Figure 4.5 compares pedestrian crash
frequencies in London by vehicle type involved and whether the crash occurred
on weekdays or weekends.

First, stacked bars are ordered by frequency, distinguishing time period using
colour lightness. Cars are by far the dominant travel mode, contributing the
largest number of crashes resulting in injury to pedestrians. Whether or not
pedestrian injuries involving cars occur more on weekends than other modes

4.2 Concepts 79

Figure 4.4: Cleveland dot plots and heatmaps summarising crash frequencies
by London borough, period of day and vehicle type.

Figure 4.5: Bars and mosaic plot displaying association between vehicle type
and injury severity.

is not clear from the left-most chart. Length encodes absolute crash counts
effectively but relative comparison on time periods between vehicle types is
challenging. In standardised bars the absolute length of bars is fixed, and bars
are split according to proportional weekday / weekend crashes (middle). The
plot is also annotated according to the expected proportion of weekday crashes
if crashes occurred by time period independently of vehicle type (22%). This
encoding shows pedestrian crashes involving taxis occur more than would be
expected at weekends, while the reverse is true of crashes involving vans, bikes
and HGVs. However, we lose a sense of the absolute numbers involved.

80 4 FEzploratory Data Analysis

Failing to encode absolute number — the amount of information in support of
some observed pattern — is a problem in EDA. Since proportional summaries
are agnostic to sample size, they can induce false discoveries, overemphasising
patterns that may be unlikely to replicate in out-of-sample tests. It is sometimes
desirable, then, to update standardised bar charts so that they are weighted
by frequency: to make more visually salient those categories that occur more
often and visually downweight those that occur less often. This is possible
using mosaic plots (Friendly 1992; Jeppson and Hofmann 2023). Bar widths
and heights are allowed to vary, so bar area is proportional to absolute number
of observations, and bars are further subdivided for relative comparison across
category values. Mosaic plots are useful tools for exploratory analysis. That
they are space-efficient and regularly sized also means they can be flexibly laid
out for comparison.

o
1 ggmosaic

The mosaic plot in Figure 4.5 was generated using the ggmosaic package,
an extension to ggplot2 (Jeppson and Hofmann 2023).

Encoding variation from expectation

The heatmap in Figure 4.4 is hampered by the dominating effect of cars
and weekdays. Any additional structure by time period and vehicle type in
boroughs outside of this is visually unintelligible. An alternative approach
could be to colour cells according to some relevant effect size statistic: for
example, differences in the proportion of weekend crashes occurring in any
vehicle-type and borough combination against the global average proportion,
or expectation, of 22% of crashes occurring on weekends. A problem with this
approach is that at this more disaggregated level, sample sizes become quite
small. Large proportional differences could be encoded that are nevertheless
based on negligible differences in absolute crash frequencies.

There are measures of effect size sensitive both to absolute and relative dif-
ferences from expectation. Signed chi-score residuals (Visvalingam 1981), for
example, represent expected values as counts separately for each category com-
bination in a dataset — in this case, pedestrian crashes recorded in a borough in
a stated time period involving a stated vehicle type. Observed counts (O;...0,,)
are then compared to expected counts (E;...E,,) as below:

x =G

The way in which differences between observed and expected values (residuals)
are standardised in the denominator is important. If the denominator was
simply the raw expected value, the residuals would express the proportional
difference between each observation and its expected count value. The de-
nominator is instead transformed using the square root (v/E;), which has the

4.2 Concepts 81

effect of inflating smaller expected values and squashing larger expected values,
thereby adding saliency to differences from expectation that are also large in
absolute number.

Figure 4.6 updates the heatmaps with signed residuals encoded using a diverg-
ing colour scheme (Brewer and Campbell 1998) — red for cells with greater crash
counts than expected, blue for cells with fewer crash counts than expected.
The assumption in the first heatmap is that crash counts by borough distribute
independently of vehicle type. Laying out the heatmap such that inner and
outer London boroughs are grouped for comparison is instructive: fewer than
expected crashes in inner London are recorded for cars; greater than expected
for all other vehicle types but especially taxis and bicycles. This pattern is
strongest (largest residuals) for very central boroughs, where pedestrian crash
frequencies are also likely to be highest and where cars are comparatively less
dominant as a travel mode. For almost all boroughs, again especially central
London boroughs, there is a clear pattern of modes other than cars, taxis and
buses overrepresented amongst crashes occurring on weekdays, again reflecting
the transport dynamics of the city.

Figure 4.6: Heatmaps of crashes by vehicle type and period of week for
London Boroughs.

82 4 FEzploratory Data Analysis

Table 4.2: Implementing Gleicher et al’s (2011) three comparison strategies
in ggplot2.

Strategy Function Use

Create separate plots in rows and/or
columns by conditioning on a
categorical variable. Each plot has same
encoding and coordinate space.

Juxtaposition | faceting

Flexibly arrange plots of different data

Juxtaposition | patchwork . .
P P type, encoding and coordinate space.

cowplot pkg

Layering marks on top of each other.
Superposition | geoms Marks may be of different data types but
must share the same coordinate space.

No strategy specialised to explicit encoding.
Often variables cross 0, so diverging
schemes, or graphics with clearly annotated
and symbolised thresholds are used.

Explicit en- | naA
coding

4.2.4 Strategies for supporting comparison

A key role for data graphics in EDA is in supporting comparison. Three strate-
gies typically deployed are juzrtaposition, superposition and explicit encoding
(see Gleicher et al. 2011). Table 4.2 defines each and identifies how they can
be implemented in ggplot2. You will see these implementations being deployed
in different ways as the book progresses.

As with most visualization design, each involves trade-offs , and so careful
decision-making. In Figure 4.4 dotplots representing counts of weekend and
weekday crashes are superposed on the same coordinate space, with connecting
lines added to emphasise difference. This strategy is fine where two categories
of similar orders of magnitude are compared, but if instead all eight vehicle
types were to be encoded with categories differentiated using colour hue,
the plot would be substantially more challenging to process. In Figure 4.6,
comparison by vehicle type is instead effected using explicit encoding — residuals
coloured above or below an expectation. Notice also the use of containment,
jJuztaposition and layout in both plots. By containing frequencies for inner-
and outer- London boroughs in separate juxtaposed plots, and within each
laying out cells top-to-bottom on frequency, the systematic differences in the
composition of vehicle types involved in crashes between inner- and outer-
London can be inferred.

Comparison and layout

Layout is an extremely important mechanism for enabling comparison. The
heatmaps in Figure 4.6, for example, would be much less effective were some
default alphabetical ordering of boroughs used. This applies especially when

4.8 Techniques 83

exploring geography. Spatial relations are highly complex and notoriously
difficult to model. It would be hard to imagine how the sorts of comparisons
in the Washington Post graphics in the previous chapter (Figure 3.1 and
Figure 3.5) could be made without using graphical methods, laying out the
peak and line marks with a geographic arrangement in this case.

Figure 4.7 borrows the earlier mosaic plot design to study crash frequencies
(bar height) and relative number of weekday/weekend crashes (dark bar width),
with frequencies compared between London boroughs. Rather than laying out
boroughs top-to-bottom on frequency, boroughs are given an approximate
spatial arrangement. This is generated using the gridmappr (Beecham 2024)
R package, which we describe and explore properly in Chapter 5. This ar-
rangement enables several patterns to be quickly inferred. We can observe
that pedestrian crashes involving motorcycles generally occur more in central
London boroughs; those involving cars occur in greater relative number during
weekends, especially so for those in central London boroughs; and, different
from other vehicle types, pedestrian crashes involving cars occur in similarly
large numbers in outer London boroughs (Barnet, Croydon) as they do inner
London boroughs such as Westminster.

4.3 Techniques

The technical element to this chapter continues with the STATS19 dataset.
Rather than a how-to guide for generating exploratory analysis plots in R, the
section aims to demonstrate a workflow for exploratory visual data analysis:

1. Expose pattern(s)
2. Model expectation(s) derived from pattern(s)
3. Show deviation from expectation(s)

It does so by exploring the characteristics of individuals involved in pedestrian
crashes, with a special focus on inequalities. Research suggests those living in
more deprived neighbourhoods are at elevated risk of road crash injury than
those living in less-deprived areas (Tortosa et al. 2021). A follow-up question
is around the characteristics of those involved in crashes: To what extent do
drivers share demographic characteristics with the pedestrians they crash into,
and does this vary by the location in which crashes take place?

4.3.1 Import

o Download the 04-template.qmd! file for this chapter, and save it to your vis4sds
project.

1 https://vis4sds.github.io/vis4sds/files/04-template.qmd

https://vis4sds.github.io/vis4sds/files/04-template.qmd

84 4 FEzploratory Data Analysis

Figure 4.7: Mosaic plots of vehicle type and period for London Boroughs
with an approximate spatial arrangement.

e Open your visasds project in RStudio, and load the template file by clicking
File > Open File ... > 04-template.qmd.

The presented analysis is based on that published in Beecham and Lovelace
(2023) and investigates vehicle-pedestrian crashes in STATS19 between 2010
and 2019, where the Index of Multiple Deprivation (IMD) class of the pedestrian,
driver and crash location is recorded. Raw STATS19 data are released by the
Department for Transport, but can be accessed via the statsi9 R package
(Lovelace et al. 2019). The data are organised into three tables:

o Accidents (or Crashes): Each observation is a recorded road crash with
a unique identifier (accident_index), date (date), time (time) and location
(longitude, latitude). Many other characteristics associated with the crashes
are also stored in this table.

o Casualties: Each observation is a recorded casualty that resulted from a road
crash. The Crashes and Casualties data can be linked via the accident_index

4.8 Techniques 85

variable. As well as casualty_severity (Slight, Serious, Fatal), information on
casualty demographics and other characteristics is stored in this table.

o Vehicles: Each observation is a vehicle involved in a crash. Again Vehicles
can be linked with Crashes and Casualties via the accident_index variable. As
well as the vehicle type and manoeuvre being made, information on driver
characteristics is recorded in this table.

An .fst dataset that uses these three tables to record pedestrian crashes with
associated casualty and driver characteristics has been stored in the book’s
accompanying data repository?.

4.3.2 Sample

The focus of our analysis is inequalities in the characteristics of those involved in
pedestrian crashes. There is only high-level information on these characteristics
in the STATS19 dataset. However, the Index of Multiple Deprivation (Noble
et al. 2019) quintile of the small area neighbourhood in which casualties and
drivers live is recorded, and we have separately derived the IMD quintile of
the neighbourhood in which crashes took place.

Not all recorded crashes contain this information, and we first create a new
dataset — ped_veh_complete — identifying those linked crashes where the full IMD
data are recorded:

Complete demographics for pedestrians, drivers and crash locations.
ped_veh_complete <- ped_veh |[>
filter(
!is.na(crash_quintile),
!is.na(casualty_quintile),
casualty_quintile != "Data missing or out of range",
driver_quintile != "Data missing or out of range"

)

The dataset contains c. 52,600 observations, 23% of linked pedestrian crashes.
Although this is a large number, there may be some systematic bias in the
types of pedestrian crashes for which full demographic data are recorded.
For brevity we will not extensively investigate this bias, but below ‘record
completeness rates’ are calculated for selected crash types. As anticipated,
lower completeness rates appear for crashes coded as Slight in injury severity,
but there are also lower completeness rates for crashes occurring in the highest
deprivation quintile.

This difference in record completeness may reflect genuine differences in record-
ing behaviour for crashes occurring in high deprivation neighbourhoods, or

2https ://github.com/vis4sds/data

https://github.com/vis4sds/data

86 4 FEzploratory Data Analysis

it might be a function of some confounding context. For example, one might
expect crashes more serious in nature to be reported in greater detail and
so have higher completeness rates. If crashes resulting in slight injuries are
overrepresented in high deprivation areas, this might explain the pattern of
completeness rates by deprivation area. To explore this further, in Figure 4.8
completeness rates are calculated separately by crash injury severity. This
demonstrates, as expected, higher completeness rates for crashes resulting in
more serious injury, but that record completeness is still lower for crashes
taking place in the high deprivation neighbourhoods.

Figure 4.8: Completeness rates by IMD class of crash location and crash
injury severity.

The code for Figure 4.8:

ped_veh |[>
mutate (
is_complete=accident_index %in% (ped_veh_complete |> pull(accident_index)),
is_ksi=if_else(accident_severity != "Slight", "Fatal | Serious", "Slight")
) 1>
group_by(crash_quintile, is_ksi) |>
summarise(prop_complete=mean(is_complete)) |>
ggplot() +
geom_point(
aes(y=crash_quintile, x=prop_complete, colour=is_ksi), size=2
)+
scale_colour_manual(values=c("#67000d", "#fb6a4a")) +

scale_x_continuous(limits=c(0.1,.4))

A breakdown of the ggplot2 code:

1. Data: A Boolean variable, is_complete, is defined by checking
accident_index against those contained in the ped_veh_complete dataset.
Note that the pull() function extracts accident_index from the com-
plete dataset as a vector of values. A Boolean variable (is_ksi) groups

4.8 Techniques 87

and separates Fatal and Serious injury outcomes from those that
are Slight. We then group on crash_quintile and +is_ksi to calculate
completeness rates by severity and crash location. Since is_complete
is a Boolean value (false=o, true=1), its mean is the proportion of
true records, in this case those with a complete status.

2. Encoding: Arrange dots vertically (y position) on crash_quintile and

horizontally (x position) on prop_complete and colour on injury severity

(1s_ksi)

Marks: geom_point() for drawing points.

4. Scale: Passed to scale_colour_manual() are hex values for dark and
light red, according to ordinal injury severity.

©w

4.3.3 Abstract and relate

Now that we’ve identified the data for our analysis, we can begin to explore the
dataset, bearing in mind the ultimate “who-hit-whom” question: Do drivers
share demographic characteristics with the pedestrians they crash into, and
does this vary by the location in which crashes take place?

To start, we abstract over the relevant variables: five IMD classes from high-to-
low deprivation (IMD quintile 1-5) for pedestrians, drivers, and crash locations.
Figure 4.9 summarises frequencies across these categories. Pedestrian crashes
occur more frequently in higher deprivation neighbourhoods; those injured
more often live in higher deprivation neighbourhoods; and the same applies to
drivers involved in crashes. This high-level pattern is consistent with existing
research (Tortosa et al. 2021) and can be explained. High deprivation areas
are located in greater number in urban areas, and so we would expect greater
numbers of pedestrian crashes to occur in such areas. The shapes of the
bars nevertheless suggest that there are inequalities in the characteristics
of pedestrians and drivers involved in crashes: frequencies are most skewed
towards high deprivation bars for pedestrians and are slightly more uniform
across deprivation classes for drivers. This may indicate an importing effect
of drivers living in lower deprivation areas crashing into pedestrians living in
higher deprivation areas — a speculative finding worth exploring.

The code for Figure 4.9:

ped_veh_complete |>
select(crash_quintile, casualty_quintile, driver_quintile) |>
pivot_longer (
cols=everything(), names_to="location_type", values_to="imd"
) 1>
group_by(location_type, imd) |>
summarise(count=n()) |> ungroup() |>

separate(col=location_type, into="type", sep="_", extra = "drop") |>

88 4 FExploratory Data Analysis

Figure 4.9: Frequencies of pedestrian crashes by IMD class of crash location,
pedestrian injured and driver involved.

mutate(

type=case_when(

type=="casualty" ~ "pedestrian",

type=="crash" ~ "location",

TRUE ~ type),

type=factor (type, levels=c("location", "pedestrian", "driver"))

) |>
ggplot() +
geom_col(aes(x=imd, y=count), fill="#003c8f") +
scale_x_discrete(labels=c("most","", "mid", "", "least")) +

facet_wrap(~type)

The ggplot2 code:

1. Data: Select the three variables recording IMD class of crash lo-
cation (crash_quintile), I)edestr1311 (casualty_quintile) and driver
(driver_qguintile). pivot_longer() makes each row a crash record and
IMD class; this dataset is then grouped in order to count frequencies
of location, pedestrian and drivers by IMD class involved. mutate()
is used to recode the type variable with more expressive labels for
locations, pedestrians and drivers and to convert it to a factor in
order to control the order in which variables appear in the faceted
plot.

2. Encoding: Bars positioned vertically (y position) on frequency and
horizontally (x position) on <md class.

3. Marks: geom_col() for drawing bars.

4.8 Techniques 89

4. Facets: facet_wrap() for faceting on the type variable (location, pedes-
trian or driver).

4.3.4 Model and residual: Pass 1

To investigate how the characteristics of pedestrians and drivers co-vary, we
can compute the joint frequency of each permutation of driver-pedestrian IMD
quintile group. This results in 525 combinations, as in the right of Figure 4.9,
and in Figure 4.10 these combinations are represented in a heatmap. Cells of the
heatmap are ordered left-to-right on the IMD class of pedestrian and bottom-
to-top on the IMD class of driver. Arranging cells in this way encourages
linearity in the association to be emphasised. The darker blues in the diagonals
demonstrate that an association between pedestrian-driver IMD characteristics
exists: drivers and passengers living in similar types of neighbourhoods are
involved in crashes with one another with greater frequency than those living
in different types of neighbourhoods.

A consequence of the heavy concentration of crash counts, and thus colour,
in the high-deprivation cells is that it is difficult to gauge variation and the
strength of association in the lower deprivation cells. We can use exploratory
models to support our analysis. In this case, our (unsophisticated) expecta-
tion is that crash frequencies distribute independently of the IMD class of
the pedestrian-driver involved. We compute signed chi-scores describing how
different the observed number of crashes in each cell position is from this
expectation.

Figure 4.10: Pedestrian casualties by IMD quintile of pedestrian and driver.

The observed-versus-expected plot highlights the largest positive residuals are
in the diagonals and the largest negative residuals are those furthest from the
diagonals: we see higher crash frequencies between drivers and pedestrians
living in the same or similar IMD quintiles and fewer between those in different
quintiles than would be expected given no association between pedestrian-
driver IMD characteristics. That the bottom left cell — high-deprivation-driver +

90 4 FEzploratory Data Analysis

high-deprivation-pedestrian — is dark red can be understood when remembering
that signed chi-scores emphasise effect sizes that are large in absolute as well
as relative number. Not only is there an association between the characteristics
of drivers and casualties, but larger crash counts are recorded in locations
containing the highest deprivation and so residuals here are large. The largest
positive residuals are nevertheless recorded in the top right of the heatmap —
and this is more surprising. Against an expectation of no association between
the IMD characteristics of drivers and pedestrians, there is a particularly high
number of crashes between drivers and pedestrians living in neighbourhoods
containing the lowest deprivation. An alternative phrasing: the IMD character-
istics of those involved in pedestrian crashes are most narrow between drivers
and pedestrians who live in the lowest deprivation quintiles.

The code:

model_data <- ped_veh_complete |>

mutate(grand_total=n()) |>
group_by(driver_quintile) |>
mutate(row_total=n()) |> ungroup() |>
group_by(casualty_quintile) |>
mutate(col_total=n()) |> ungroup() |>
group_by(casualty_quintile, driver_quintile) |>
summarise(

observed=n(),

row_total=first(row_total),

col_total=first(col_total),

grand_total=first(grand_total),

expected=(row_totalxcol_total)/grand_total,

resid=(observed-expected) /sqrt(expected),

max_resid <- max(abs(model_datasresid))

model_data |>
ggplot(aes(x=casualty_quintile, y=driver_quintile)) +
geom_tile(aes(fill=resid), colour="#707070", size=.2) +
scale_fill_distiller(
palette="RdBu", direction=-1,
limits=c(-max_resid, max_resid)
) +

coord_equal()

The ggplot2 spec for Figure 4.10:

1. Data: We create a staged dataset for plotting. Observed values

4.8 Techniques 91

for each cell of the heatmap are computed, along with row and
column marginals for deriving expected values. We assume that
crash frequencies distribute independently of IMD class, and so
calculate expected values for each cell of the heatmap (E;;) from its
corresponding column (C;), row (R;) maginals and the grand total
of crashes (GT): E; = % The graphics in the right margin of
Figure 4.10 show how expectation is spread in this way. You will
notice that group_by() does some heavy lifting to arrive at these row,
column and cell-level totals. The way in which the signed chi-score
residuals are calculated in the final group_by () follows that described
earlier in the chapter.

2. Encoding: Cells of the heatmap are arranged in x and y on the

IMD class of pedestrians and drivers and filled according to signed

chi-score residuals. .

Marks: geom_tile() for drawing cells of the heatmap.

4. Scale: scale_fill_distiller() for continuous ColorBrewer (Harrower
and Brewer 2003) diverging scheme, using the rdsu palette. To make
the scheme centred on 0, the maximum absolute residual value in
model_data is used.

©w

Task 1

You will see that data preparation with dplyr plays an important role in
constructing data graphics in ggplot2. While the code to create model_data
may seem somewhat cumbersome, you will find yourself reusing these
data processing templates.

Now that you have seen how observed, expected and residual values can
be derived for cells of a heatmap, recreate the heatmap in the left column
of Figure 4.6 displaying differences from expectation in the number of
pedestrian crashes by London borough, assuming that crashes distribute
by borough independently of vehicle type.

4.3.5 Model and residual: Pass 2

An obvious confounding factor, neglected in the analysis above, is the IMD
class of the location in which crashes occur. To explore this, we can condition
(or facet) on the IMD class of crash location, laying out the faceted plot
left-to-right on the ordered IMD classes. Eyeballing this graphic of observed
counts (Figure 4.11), we see again the association between IMD characteristics
for crashes occurring in the least deprived quintile and elsewhere slightly more
‘mixing’. Few pedestrians living outside the most deprived quintile are involved
in crashes that occur in that quintile. Given the dominating pattern is of
crashes occurring in the most deprived quintiles, however, it is difficult to see

92 4 FEzploratory Data Analysis

too much variation from the diagonal cell in the less-deprived quintiles. An
easy adjustment would be to apply a local colour scale for each faceted plot
and compare relative ‘leakage’ from the diagonal for each IMD crash location.
The more interesting question, however, is whether this known association
between pedestrian and driver characteristics is stronger for certain driver-
pedestrian-location combinations than others: that is, net of the dominant
pattern in the top row of Figure 4.11, in which cells are there greater or fewer
crash counts?

The concept that we are exploring is whether crash counts vary depending on
how different the IMD characteristics of pedestrians and drivers are from those
of the locations in which crashes occur. We calculate a new variable measuring
this distance: ‘geodemographic distance’, the Euclidean distance between the
IMD class of the driver-pedestrian-crash location, treating IMD as a continuous
variable ranging from 1 to 5. The second row of Figure 4.11 encodes this directly.
We then specify a Poisson regression model, modelling crash counts in each
driver-pedestrian-crash location cell as a function of geodemographic distance
for that cell. Since the range of the crash count varies systematically location-
type, the model is extended with a group-level intercept that varies on the
IMD class of the crash location. If regression modelling frameworks are new
to you, don’t worry about the specifics. More important is our interpretation
and analysis of the residuals. These residuals are expressed in the same way
as in the signed-chi-score model and show whether there are greater or fewer
crash counts in any pedestrian-driver-location combination than would be
expected given the amount of geodemographic difference between individuals
and locations involved. Our expectation is that crash counts vary inversely
with geodemographic distance. In EDA, we are not overly concerned with
confirming this to be the case; instead we use our data graphics to explore
where in the distribution, and by how much, the observed data depart from
this expectation.

The vertical block of red in the left column of the left-most matrix (crashes
occurring in high-deprivation areas) indicates higher than expected crash
counts for pedestrians living and being hit in the most deprived quintile,
both by drivers living in that high-deprivation quintile and the less-deprived
quintiles (especially the lowest quintiles). This pattern is important as it
persists even after having modelled for ‘geodemographic distance’. There is
much to unpick elsewhere in the graphic. Like many health issues, pedestrian
road injuries have a heavy socio-economic element, and our analysis has
identified several patterns worthy of further investigation. However, this model-
backed exploratory analysis provides direct evidence of the previously suggested
“importing effect” of drivers from low-deprivation areas crashing and injuring
predestrians in high-deprivation areas.

4.8 Techniques 93

Figure 4.11: Pedestrian casualties by IMD quintile of pedestrian, driver and
crash location.

The modelling is somewhat involved — a more gentle introduction to model-
based visual analysis appears in Chapters 6 and 7 — but code for generating
the model and graphics in Figure 4.11 is below.

model_data <- ped_veh_complete |>
mutate(
Derive numeric values from IMD classes (ordered factor variable).
across(
.cols=c(casualty_quintile, driver_quintile, crash_quintile),
.fns=Tlist(num=~as.numeric(
factor (., levels=c("1 most deprived", "2 more deprived",
"3 mid deprived", "4 less deprived", "5 least deprived"))
)
)
Calculate demog_distance.
demog_dist=sqrt(
(casualty_quintile_num-driver_quintile_num) 2 +
(casualty_quintile_num-crash_quintile_num) "2 +

(driver_quintile_num-crash_quintile_num) "2

94 4 FExploratory Data Analysis

) 1>
Calculate on observed cells: each ped-driver IMD class combination.
group_by(casualty_quintile, driver_quintile, crash_quintile) |>

summarise(crash_count=n(), demog_dist=first(demog_dist)) |> ungroup()

Model crash count against demographic distance allowing the qintercept
to vary on crash quintile, due to large differences in obs frequences.
between location quintiles.

model <- lme4::glmer(crash_count ~ demog_dist + (1 | crash_quintile),

data=model_data, family=poisson, nAGQ = 100)

Extract model residuals.
model_data <- model_data %>%

mutate(ml_resids=residuals(model, type="pearson"))

Plot.
model_data |>
ggplot(aes(x=casualty_quintile, y=driver_quintile)) +
geom_tile(aes(fill=ml_resids), colour="#707070", size=.2) +
scale_fill_distiller(palette="RdBu", direction=-1,
Timits=c(
-max (abs (model_data$ml_resids)),
max (abs(model_datasml_resids))
)+
facet_wrap(~crash_quintile, nrow=1) +

coord_equal()

Task 2: Design challenge

Key to developing data graphics in any exploratory anaysis is proficiency
in implementing strategies for comparison (e.g. Table 4.2). Figure 4.12
makes use of juxtaposition (top graphic) and superposition + explicit
encoding (bottom graphic) to compare pedestrian casualties taking
place in daylight versus darkness and against the age of pedestrians
injured and the IMD class of the crash location.

As expected from the analysis at the start of this chapter, there is a
peak in younger adults being injured in pedestrian road crashes. For
crashes taking place in darkness, this peak is less extreme and shifts to
slightly ‘older’ young adult ages.

In total, 71% of recorded pedestrian crashes occur in daylight. The
bottom graphic uses this proportion to explicitly encode an expected

4.4 Conclusions 95

number of daylight crashes at each age group — e.g. if one were to
randomly select an age and deprivation grouping, we would expect 71%
of crashes to occur in daylight. This addition helps expose that there
are slightly more crashes recorded in darkness for crashes taking place
in mid-deprivation locations and involving younger and middle-age
pedestrians. A more subtle pattern is of slightly fewer crashes in darkness
than expected in older adults.

Figure 4.12: Pedestrian casualties by age of pedestrian, IMD quintile
of crash location and level of darkness.

Try writing some dplyr and ggplot2 code to generate data graphics similar
to Figure 4.12, or perhaps using the same layout and plot grammar but
conditioning on some other category of interest in the ped_ven dataset. You
will want to consider how the variables (age_of_casualty, crash_quintile,
light_conditions) are mapped to visual channels via position, colour and
spatial region.

4.4 Conclusions

Exploratory data analysis (EDA) is an approach to analysis that aims to
amplify knowledge and understanding of a dataset. The idea is to explore

96 4 FEzploratory Data Analysis

structure, and data-driven hypotheses, by quickly generating many often
throwaway statistical and graphical summaries. In this chapter we discussed
chart types for exposing distributions and relationships in a dataset, depending
on data type. We also showed that EDA is not model-free. Data graphics help
us to see dominant patterns and from here formulate expectations that are to
be modelled. Different from so-called confirmatory data analysis, however, in
an EDA the goal of model-building is not to “identify whether the model fits or
not [...] but rather to understand in what ways the fitted model departs from
the data” (Gelman 2004). We covered visualization approaches to supporting
comparison between data and expectation using juxtaposition, superimposition
and explicit encoding (Gleicher et al. 2011). The chapter did not provide an
exhaustive survey of EDA approaches, and certainly not an exhaustive set of
chart types and model formulations for exposing distributions and relationships.
By linking the chapter closely to the STATS19 dataset, we learnt a workflow
for EDA that is common to most effective data analysis and communication
activity:

1. Expose pattern
2. Model an expectation derived from that pattern
3. Show deviation from expectation

4.5 Further Reading

For discussion of exploratory analysis and visual methods in modern data
analysis:

e Hullman, J. and Gelman, A. 2021. “Designing for Interactive Exploratory
Data Analysis Requires Theories of Graphical Inference” Harvard Data
Science Review, 3(3). doi: 10.1162/99608{92.3ab8a587.

Further discussion with implemented examples for road safety analysis:

e Beecham, R., and R. Lovelace. 2023. “A Framework for Inserting Visually-
Supported Inferences into Geographical Analysis Workflow: Applica-
tion to Road Safety Research” Geographical Analysis, 55: 344-366. doi:
10.1111/gean.12338.

For an introduction to exploratory data analysis in the tidyverse:

o Wickham, H., Cetinkaya-Rundel, M., Grolemund, G. 2023, “R for Data
Science, 2nd Edition”, Sebastopol, CA: O’Reilly.
— Chapter 10.
e Ismay, C. and Kim, A. 2020. “Statistical Inference via Data Science: A
ModernDive into R and the Tidyverse”, New York, NY: CRC Press. doi:
10.1201/9780367409913.

https://doi.org/10.1162/99608f92.3ab8a587
https://doi.org/10.1111/gean.12338
https://doi.org/10.1201/9780367409913

5

Geographic Networks

By the end of this chapter you should gain the following knowledge and
practical skills.

1 Knowledge

0 Understand the special structure and vocabulary used to represent
network data.

[0 Appreciate the strengths, weaknesses and trade-offs of network visual-
izations.

O Learn design approaches for incorporating geographic context into
network visualization.

1 Practical skills

Generate semi-spatial gridmap layouts using the gridmappr package.
Write ggplot2 specifications to generate gridmaps: geographically ar-
ranged bar charts and full origin-destination maps (OD maps).

Write code to generate model-expected values to emphasise different
structure and patterns in OD maps.

OO

OJ

5.1 Introduction

Networks are a special class of data used to represent things, entities, and
how they relate to one another. Network data consist of two types of element:
nodes, the entities themselves, and edges, the connections between nodes. Both
nodes and edges can have additional information attached to them — counts,
categories and directions. Network data are cumbersome to work with in R as
they are not represented well by flat data frames. A common workflow is to
split the data across two tables — one representing nodes and one representing
edges (Wickham, Navarro, and Lin Pedersen 2023).

97

98 5 Geographic Networks

A category of network data used heavily in geospatial analysis is origin-
destination (OD) data describing, for example, flows of bikes (Beecham et al.
2023) and commuters (Beecham and Slingsby 2019) around a city. These data
consist of nodes, origin and destination locations, and edges, flows between
origins and destinations. While statistics from Network Science can and have
been deployed in the analysis of geospatial OD data (Y. Yang et al. 2022),
visualization techniques provide much assistance in exposing the types of
complex structural patterns and relations inherent in geographic flow data.

In this chapter we will work with an accessible and widely used OD network
dataset: Census travel-to-work data recording counts of individuals commuting
between Census geographies of the UK based on their home and workplace.
Specifically, we will work with data in London recording travel-to-work between
the city’s 33 boroughs.

5.2 Concepts
5.2.1 Node summary

The nodes in this dataset are London’s 33 boroughs, and the edges are directed
OD pairs between boroughs. In Figure 5.1 frequencies of the number of jobs
available in each borough and workers living in each borough (the nodes) are
represented. Note that job-rich boroughs in central London — Westminster,
City of London — contain many more jobs than workers residing in them. We
can infer that there is a high level of in-commuting to those boroughs and the
reverse, a high level of out-commuting, for worker-rich boroughs containing
larger numbers of workers relative to jobs.

5.2.2 Node-link representations

The most common class of network visualization used to represent network
data are node-link diagrams. These depict graphs in two dimensions as a
force-directed layout. Nodes are positioned such that those sharing greater
connection — edges with greater frequencies — are closer than those that are less
well-connected — that do not share edges with such large frequencies. Edges
are drawn as lines connecting nodes, and so node-link diagrams.

The left graphic in Figure 5.2 uses a force-directed layout to represent the
travel-to-work data. Nodes, London boroughs, are sized according to the
number of jobs and workers they contain and edges, commuters between bor-
oughs, are represented as lines sized by commuter frequency. As is often the
case with node-link diagrams, the graphic looks complex. Job-rich boroughs,
Westminster and City of London, are labelled and have many connecting

5.2 Concepts 99

Figure 5.1: Barchart of jobs and workers contained in London boroughs.

lines — most likely workers commuting in from other London boroughs. Other
more ‘residential’ boroughs are labelled. Lambeth and Wandsworth, for exam-
ple, contain many connecting lines — likely residents commuting out to other
London boroughs for work. That these boroughs are close in geographic space
as well as force-directed space suggests that between-borough commuting is
spatially dependent.

To investigate this more directly, it makes sense to position nodes (boroughs)
with a geographic arrangement. In the right of Figure 5.2, boroughs are
placed in their exact geographic position (geometric centroid of boroughs) and
line width and colour are used to encode edge (commuter flow) frequency.
Boroughs are again represented with circles sized according to frequency
(the total number of jobs and workers contained in the borough), and com-
muter flow direction is encoded by making lines asymmetric, following Wood,
Slingsby, and Dykes (2011): the straight ends are origins, the curved ends
destinations.

The geographic positioning of boroughs adds context, and the encoding of
direction provides further detail. For example, the pattern of commuting
into central London boroughs versus more peripheral boroughs, with asym-
metric commuter flows into Westminster, is just about detectable, and a
more symmetric pattern between outer London boroughs is somewhat eas-
ier to see. However, there are problems that affect the usefulness of the
graphic. Self-contained flows — where individuals live and work in the same
borough — are not shown. The graphic is cluttered with a ‘hairball’ effect due to

100 5 Geographic Networks

Figure 5.2: Flowlines with edges showing frequencies between London bor-
oughs.

multiple overlapping lines. Longer flows appear more visually dominant than
do shorter flows, an unhelpful artefact of the encoding. Also, aggregating
to the somewhat arbitrary geometric centre of boroughs and drawing lines
between these locations implies an undue level of spatial precision; the pattern
of commuting would likely look different were individual flows encoded with
precise OD locations of home and workplace.

5.2.3 Origin-Destination matrices

An alternative way to represent commuter flow frequencies is as an origin-
destination matrix, as in Figure 5.4. The columns are destinations, London
boroughs into which residents commute for work; the rows are origins, London
boroughs from which residents commute out for work. Commute frequencies
are encoded using colour value — the darker the colour, the larger the number
of commutes between those boroughs. Boroughs are ordered left-to-right and
top-to-bottom according to the total number of jobs accessed in each borough.

While using colour lightness rather than line width to show flow magnitude is
a less effective encoding channel (following Munzner 2014), there are obvious
advantages. The salience bias of longer flows is removed — every OD pair, 1039
in total (332), is given equal graphic saliency. Ordering cells of the matrix by
destination size (number of jobs accessed in each borough) helps to emphasise
patterns in the job-rich boroughs, but also encourages within and between
borough comparison. For example, the lack of colour outside of the diagonals
in the less job-rich boroughs, which also tend to be in outer London, suggests
that labour markets there might be more self-contained. By applying a local
scaling on destination (right plot), we can explore commutes into individual
boroughs in a more detailed way. The vertical strips of blue for other job-rich

5.2 Concepts 101

central and inner London boroughs (Hammersmith & Fulham and Kensington
& Chelsea), suggesting reasonably high-levels of in-commuting to access jobs
there.

Figure 5.3: Origin-destination matrices ordered according to borough size on
number of jobs. In the right graphic a separate ‘local’ colour scale is created
for each destination borough.

5.2.4 Origin-Destination maps

The OD matrices expose new structure that could not be so easily inferred
from the node-link visualizations. For phenomena such as commuting, however,
the fact that geographic context is missing is a pitfall. OD maps (Wood, Dykes,
and Slingsby 2010) are a form of matrix that make better use of layout and
position to support this spatial dimension of analysis. They take a little to get
your head around, but the idea is elegant.

OD maps contains exactly the same cells as an OD matrix, but the cells
are re-ordered with an approximate geographic arrangement, as in the right
column of Figure 5.4. So, for example, we may be interested in focussing on
destination, or workplace, boroughs. In the first highlighted example, commutes
into Westminster are considered (the left-most column of the OD matrix).
Cells in the highlighted column are coloured according to the number of
workers resident in each borough that travel into Westminster for work. In the
map to the right, these cells are then re-ordered with an approximate spatial
arrangement. The geographic ordering allows us to see that residents access
jobs in Westminster in large numbers from many boroughs in London, but

102 5 Geographic Networks

especially from Wandsworth (Wns), Lambeth (Lmb) and Southwark (Sth) to
the south of Westminster (Wst).

In the second example — the middle row of the matrix — we focus on origins:
specifically, commutes out of Hackney. Cells in the highlighted row are coloured
according to the number of jobs accessed in each borough by residents living in
Hackney, but travelling out of that borough for work. Cells are again reordered
in the inset map. This demonstrates that commuting patterns are reasonably
localised. The modal destination/workplace borough remains Westminster, but
relatively large numbers of jobs are accessed in Camden (Cmd), Islington (Isl),
Tower Hamlets (TwH) and the City of London (CoL) by residents living in
Hackney.

Figure 5.4: Origin-destination matrices: highlighted destination (Westminster)
and origin (Hackney) with geospatial arrangement.

OD maps extend this idea by displaying all cells of the OD matrix with
a geographic arrangement. This is achieved via a ‘map-within-map’ layout
(Figure 5.5), made possible by the fact that the gridded arrangement contains
regularly-sized cells.

Figure 5.6 is a destination-focussed OD map (D-OD). Each larger reference cell
identifies destinations, and the smaller cells are coloured according to origins
— the number of residents in each borough commuting into the reference cell
for work. The map uses a local colour scaling, with same origin-destination
cells greyed out. Flow counts are summarised over each reference borough
(destination in this case) and normalised according to the maximum flow count
for that reference borough.

The local scaling allows us to characterise the geography of commuting into
boroughs in some detail. The two job-rich boroughs, Westminster and City of

5.2 Concepts 103

Figure 5.5: Map-witin-map layout required for OD maps. The approximate
spatial arrangement is created by the gridmappr package (Beecham 2024).

London, clearly draw workers in large proportions across London boroughs,
and to a lesser extent this is the case for other central/inner boroughs such as
Islington (Isl), Camden (Cmd) and Tower Hamlets (TwH). For outer London
boroughs, commuting patterns are more localised. Large numbers of available
jobs are filled by workers living in neighbouring boroughs. Readers familiar
with London’s geography may notice that inner London boroughs south of the
river — Lambeth (Lam), Wandsworth (Wnd), Southwark (Sth) — tend to draw
workers in greater number from boroughs that are also south of the river.

Task 1

Although OD maps overcome several problems of flow-line based
visualizations and share several of the characteristics of effective data
graphics discussed in Chapter 3, they do require some interpretation,
especially when seen for the first time.

Test your knowledge by studying Figure 5.6 and completing the following
look-up tasks:

o For jobs filled in the City of London (CoL) from which borough does
the largest number of workers commute?

o For jobs filled in Camden (Cmd) from which borough does the largest
number of workers commute?

o Eyeballing the graphic, identify the top 3 boroughs which appear to
have the most localised labour markets in terms of in-commuting.

104 5 Geographic Networks

Figure 5.6: Destination-focussed OD map of commutes between London
boroughs, with local scaling.

5.3 Techniques

The technical element to this chapter continues in our analysis of 2011 Census
travel-to-work data. After importing the dataset, we will organise flow data
into nodes and edges before creating graphics that summarise over the nodes,
London boroughs, and reveal spatial structure in the edges, OD commuter
flows between boroughs. A focus for the analysis is on how the geography of
travel-to-work varies by occupation type.

5.3.1 Import

o Download the o5-template.qmd! file for this chapter and save it to your vis4sds
project.

e Open your visasds project in RStudio and load the template file by clicking
File > Open File ... > 05-template.qmd.

1 https://vis4sds.github.io/vis4sds/files/05-template.qmd

https://vis4sds.github.io/vis4sds/files/05-template.qmd

5.8 Techniques 105

Table 5.1: Census OD travel-to-work data: edges (OD flows) table.

o bor | d bor occ__type count | is_ prof
Barnet | Westminster | 1__managers_ senior 2733 | TRUE
Barnet | Westminster | 2_ professional 4055 | TRUE
Barnet | Westminster | 3_ associate_ professional | 2977 | TRuE
Barnet | Westminster | 4 administrative 2674 FALSE
Barnet | Westminster | 5_ trade 687 FALSE
Barnet | Westminster | 6_ caring_ leisure 755 FALSE
Barnet | Westminster | 7 sales customer 1255 FALSE
Barnet | Westminster | 8 machine operatives 257 FALSE
Barnet | Westminster | 9 elementary 1309 | FALSE

A .csv file containing Census travel-to-work data in London has been stored in
the book’s accompanying data repository?. Code for downloading the data is
in the template file. The data can then be read into your session in the usual
way.

Read in local copies of the Census travel-to-work data.

od_pairs <- read_csv(here("data", "london_ttw.csv"))

In order to generate an approximate geographic arrangement of London bor-
oughs we will use the gridmappr R package (Beecham 2024). The development
version can be downloaded with:

devtools::install_github("rogerbeecham/gridmappr")

The od_pairs dataset is in Table 5.1. Each observation is a unique OD pair
summarising the total number of recorded commuters between a pair of London
boroughs for a stated occupation type.

Nodes in the dataset are the 33 London boroughs. We can express commuters
between these nodes in different ways, according to whether nodes are desti-
nations or origins. In the code below, two tables are generated with OD data
grouped by destination (nodes_d) and origin (nodes_o) and commuters into- and
out of- boroughs counted respectively. These two data sets are then combined
with bind_rows() and distinguished via the variable name type.

nodes_d <- od_pairs |>
group_by(d_bor, occ_type) |>

summarise(count = sum(count), is_prof = first(is_prof)) [>

2https://github.com/visdsds/data

https://github.com/vis4sds/data

106 5 Geographic Networks

ungroup() |> rename(la = d_bor) |>

mutate (type="jobs")

nodes_o <- od_pairs |>
group_by(o_bor, occ_type) |>
summarise(count = sum(count), is_prof = first(is_prof)) |[>
ungroup() |> rename(la = o_bor) |>

mutate(type="workers")

nodes <- bind_rows(nodes_o, nodes_d)

5.3.2 Gridmap layout

We will analyse over the travel-to-work data by laying out data graphics with
a geospatial arrangement. Such arrangements can be automatically created
using the gridmappr R package (Beecham 2024). Given a set of point locations,
the package creates a two-dimensional grid of user-specified dimensions and
allocates points to the grid such that the distance between points is minimised.

The main function to call is points_to_grid(). This takes a data frame of
geographic points and returns corresponding grid cell positions (row and
column identifiers). In the code below an 8x8 grid is used. The allocation is
also constrained by a compactness parameter which determines the extent to
which points are allocated to cells in the centre (compactness = 1), edges (0)
or scaled geographic location (0.5) within the grid.

library(gridmappr)

n_row <- 8

n_col <- 8

pts <- london_boroughs |> st_drop_geometry() |>
select(area_name, x = easting, y = northing)

solution <- points_to_grid(pts, n_row, n_col, compactness = .6)

Once a layout is generated, we create a corresponding polygon object so that
the gridmap can be plotted. This is achieved with make_grid(). This function
takes an sf data frame containing polygons with ‘real’ geography and returns
an sf data frame representing a grid, with variables identifying column and row
IDs (bottom left is origin) and geographic centroids of grid squares. The gridded
object can then be joined on a gridmap solution returned from points_to_grid()
in order to create an object in which each grid square corresponds to a gridmap
cell position.

5.8 Techniques 107

grid <- make_grid(london_boroughs, n_row, n_col) |[>

inner_join(solution)

To evaluate different layouts that could be generated from differently specified
grid dimensions and/or compactness values, it can be useful to show the
geographic distortion introduced when moving centroids to regularly sized grid
cells. In the example below, displacement vectors are drawn connecting the
centroid of each borough in London in real and grid space. This is achieved
with get_trajectory() from the odvis package.

Figure 5.7: Displacement vectors showing distortion introduced by candidate
gridmap layouts.

The code is slightly more advanced. Some concepts, for example functional-
style programming with map(), are introduced properly in later chapters. First,
we combine the real and grid geographies in a single data frame. Then we map()
over each real-to-grid location pair calling get_trajectory() to generate a data
frame of trajectories — origins, destinations and control points, which affect
the path of the vectors so that they curve towards the destination. Finally
trajectories are plotted via geom_bezier(), with separate lines (group=) for each
real-to-grid OD pair.

Install odvis.
devtools::install_github("rogerbeecham/odvis")

library(odvis)

Combine the grid and london_boroughs (real geography)
objects into a single simple features data frame.
lon_geogs <- bind_rows(
london_boroughs |> mutate(type = "real") |>
select(area_name, x = easting, y = northing, type),

grid |> mutate(type = "grid") |>

108 5 Geographic Networks

select(area_name, x, y, type, geometry = geom)

Create points for drawing trajectories
-- origin, destination and control point locations.
trajectories <- lon_geogs |> st_drop_geometry() |>
filter(!is.na(area_name)) |>
pivot_wider(names_from = type, values_from = c(x, y)) |>
mutate(id = row_number()) |>
nest(data = c(area_name, x_real, y_real, x_grid, y_grid)) |>
mutate(trajectory = map(data,
~get_trajectory(
.x$x_real, .xSy_real, .x$x_grid, .xSy_grid, .xS$Sarea_name
)
) 1>
select(trajectory) |>

unnest(cols = trajectory)

Plot displacement vectors.
ggplot() +
geom_sf(
data = lon_geogs |>
mutate(type = factor(type, levels = c("real", "grid"))),
aes(fill = type, colour = type), linewidth = .2) +
ggforce: :geom_bezier(
data = trajectories,
aes(x = x, y =y, group = od_pair),
colour = "#08306b", linewidth = .4
) +
scale_fill_manual(
values = c("#fofofe", "transparent"), guide = "none") +
scale_colour_manual(
values = c("#FFFFFF", "#525252"), guide = "none") +
theme_void()

Once a gridmap polygon file (grid) and corresponding cell positions (row and
col) are generated, gridmaps can be plotted from the polygon file directly, as
in plot (a) of Figure 5.8, by supplying grid square positions to facet_grid(),
plot (b), or combining both to effect a map-within-map layout for OD maps,
plot (¢).

5.8 Techniques 109

Figure 5.8: ggplot2 code for plotting gridmap layouts.

5.3.3 Analysing over nodes

In Figure 5.9 are gridmaps summarising over the nodes (boroughs). The number
of workers living in each borough (left column) and jobs available in each
borough (right column) is encoded using circle size, with circles positioned
in z, y at the centroids of the grid squares. Frequencies are shown separately
for professional and non-professional occupation types. If you are familiar
with London’s social geography, the patterns can be understood. There are
comparatively more non-professional workers living in the somewhat more
affordable boroughs in outer and east London; and job-rich central London
boroughs — Westminster Wst, Camden Cmd, City of London CoL, Tower
Hamlets TwH — provide a large number of professional jobs.

The code for Figure 5.9:

grid |>
inner_join(nodes |> group_by(la, is_prof, type) |>

summarise (count=sum(count)),

110 5 Geographic Networks

Figure 5.9: Workers and jobs in London borough by occupation class. Bar
counts are scaled locally by borough.

by = c("area_name" = "la")
ME
mutate(
is_prof =
factor(if_else(is_prof, "professional", "non-professional),
levels = c("professional", "non-professional")),
type = factor(type, levels = c("workers", "jobs")),
) 1>
ggplot(aes(x = x, y = y)) +
geom_sf(fill = "#ffffff") +
geom_point(aes(size = count, colour = is_prof), alpha = .5) +
facet_grid(is_prof ~ type) +
scale_colour_manual(values = c("#67000d", "#08306b"))

The ggplot2 code:

1. Data: From the derived nodes data frame we count workers and jobs
(type) by borough, collapsed over professional or non-professional
occupation types (is_prof). Note that we also start by joining on
grid in order to bring in the polygon file and coordinates of the
generated gridmap. Converting is_prof and type to factor variables
gives us control over the order in which they appear in the plot.

2. FEncoding: the proportional symbols are positioned at the centroids
of borough grid squares (z, y), sized according to count of jobs or
workers and coloured according to occupation type (is_prof).

5.8 Techniques 111

3. Marks: geom_point() for proportional symbols and geom_sf() for grid
outline — remember our dataset is now of class sf as we joined on
the grid object.

4. Scale: scale_colour_manual() for associating occupation type.

5. Facets: facet_wrap() on workers/jobs summary type and high-level
occupation type (is_prof).

In Figure 5.9, we collapsed over nine occupation types in order to plot
proportional-symbol maps. Since gridmaps consist of regularly-sized cells,
we can introduce more complex graphical summaries with a geographical
arrangement. For example, Figure 5.10 uses bar charts to analyse the number
of workers (left-pointing bars) and jobs (right-pointing bars) by occupation
type across the the full nine occupation classes. In the selected examples below,
jobs and workers are differentiated by varying the direction of bars: pointing
to the right for jobs, to the left for workers. The counts are scaled locally.
For each borough, its modal category count of jobs/workers by occupation is
found, and bar length is scaled relative to this modal category. This encoding
allows us to distinguish between job-rich boroughs with longer bars pointing
to the right (Westminster); resident/worker-rich boroughs with longer bars
pointing to the left (Wandsworth); and outer London boroughs that are more
self-contained (Hillingdon).

Figure 5.10: Workers and jobs in selected London boroughs by full occupation
classes.

The code for Figure 5.10:

plot_data <- solution |>
inner_join(nodes, by = c("area_name" = "la")) |>
group_by(area_name) |>
mutate(count = count / max(count)) |> ungroup() |>
mutate(

count = if_else(type == "jobs", count, -count),

112 5 Geographic Networks

occ_name = factor (occ_type),

occ_type = as.numeric(fct_rev(factor(occ_type)))

plot_data |>

filter (area_name %in%
c("Wandsworth", "Westminster", "Bexley", "Hillingdon")) |[>

ggplot(aes(x = occ_type, y = count)) +
geom_col(aes(fill = dis_prof), alpha = .5, width = 1) +
geom_hline(yintercept = 0, linewidth = .4, colour = "#ffffff") +
facet_wrap(~area_name) +
scale_y_continuous(limits = c(-1, 1)) +
scale_fill_manual(values = c("#08306b", "#67000d"), guide = "none") +
coord_flip()

The ggplot2 spec:

1. Data: We create a staged dataset for plotting (plot_data). The dif-
ferent bar directions for workers/jobs is achieved by a slight hack
— changing the polarity of counts by occupation depending on the
summary type. Additionally in this staged dataset, counts are fur-
ther locally (borough-level) scaled. We group_by borough and express
counts of jobs or workers in a borough for an occupation type rela-
tive to the largest occupation type in that borough. Note that we
filter () on some selected boroughs.

2. FEncoding: Bars whose length (y=) varies according to count and

categorical position (x=) according to occ_type, filled on high-level

occupation type (is_prof).

Marks: geom_col() for bars.

4. Scale: scale_fill_manual() for associating occupation type,
scale_x_continuous() for making sure workers/jobs bars use
the same scale.

5. Facets: facet_wrap() on borough (area_name).

6. Setting: coord_flip() for bars that are oriented horizontally.

©w

Adding a geospatial arrangement, as in Figure 5.11, can further help with
exploring the geography to these different categories of borough: balanced
boroughs to the east (Barking and Dagenham BaD) and west (Hillingdon Hil);
worker-rich boroughs (left-pointing bars) with large proportions of professional
workers in west and south west London (Wandsworth Wnd, Richmond Upon
Thames RuT); job-rich boroughs (right-pointing bars) in central London
(Westminster Wst, Camden Cmd).

Different from the proportional-symbol maps, the spatial arrangement in
Figure 5.11 is generated using ggplot2’s in-built faceting rather than a spatial

5.8 Techniques 113

Figure 5.11: Workers and jobs in London boroughs by full occupation classes.

polygon file. This can be understood when remembering that gridmap layouts
created by points_to_grid() define row and column identifiers for each spatial
unit. The only update to the bar chart code is that we supply row and col
identifiers to facet_grid(), with a slight hack on the row variable (-row) as
gridmappr’s origin [min-row, min-col] is the bottom-left cell in the grid whereas
for facet_grid() the origin is the top-left.

The code for Figure 5.11 is below, simply updating the early code with a call
to facet_grid():

plot_data |>
ggplot(aes(x = occ_type, y = count)) +
geom_col(aes(fill = is_prof), alpha = .5, width = 1) +
geom_hline(yintercept = 0, linewidth = .4, colour = "#ffffff") +
facet_grid(-row ~ col, scales = "free") +
scale_y_continuous(limits = c(-1, 1)) +
scale_fill_manual(values = c("#08306b", "#67000d")) +
coord_flip()

114 5 Geographic Networks

5.3.4 Analysing over edges

To study the geography of flows between boroughs, we can update our ggplot2
specification to generate a full OD map. In the example in Figure 5.12, there
is a little more thinking around patterns in the data that we wish to explore,
borrowing from the ideas introduced in the previous chapter.

We’ve identified differences in where professional jobs and workers are located
in London, and it is reasonable to expect that flows between boroughs also
have an uneven geography. To explore this, we can set up a model that assumes
that commuter flows between boroughs distribute uniformly across London.
Of all commutes between London boroughs, 51% are to access professional
jobs (global_prof). Under an assumption of uniformity, were we to randomly
sample an OD (borough-borough) commute pair, we would expect to see this
proportion when counting up the number of professional and non-professional
occupation types present in that commute. For each OD pair, we therefore
generate expected counts by multiplying the total number of commuters
present in an OD pair by this global_prof, and from here signed residuals
(resid) identifying whether there are greater or fewer professionals commuting
that OD pair than would be expected. Note that these are like the signed
chi-scores in the previous chapter in that rather than expressing differences
in observed counts as a straight proportion of expected counts (dividing by
expected counts), we apply a power transform that is <1.0 to the denominator.
This has the effect of also giving saliency to differences that are large in absolute
terms. You could try varying this exponent (maybe between 0.5-1.0) to see its
effect on residuals in the OD map.

Figure 5.12 is a D-OD map; the large reference cells are destination boroughs
(workplaces), and the small cells origins (residences) from which workers travel
to access jobs in the reference cell. From this we observe that job-rich boroughs
in central London are associated more with professional occupations (red cells)
and draw professional commuters especially from ‘residential’ boroughs such as
Wandsworth (Wnd), Hammersmith and Fulham (HaF). Note that the darker
colours indicate that these job-rich boroughs also attract workers in large
number from boroughs across London. By contrast, boroughs in outer London
do not draw workers from across London in such large number, and the very
dark blues in the reference cells suggest that, as might be expected, the labour
market for non-professional jobs is more localised.

The code:

edges <- od_pairs |>
group_by(o_bor, d_bor) |>
summarise(
commutes = sum(count),

is_prof = sum(count[is_prof]),

5.8 Techniques 115

Figure 5.12: Commutes between London boroughs: difference maps by occu-
pation type assuming professionals and non-professionals distribute uniformly
across London.

prop_prof= is_prof/commutes
E
left_join(grid, by=c("o_bor"="area_name")) |>
st_drop_geometry() |> select(-geom) |>
rename (o_x=x, o_y=y, o_col=col, o_row=row) |>
left_join(grid, by=c("d_bor"="area_name")) |>
st_drop_geometry() |> select(-geom) |>

rename(d_x=x, d_y=y, d_col=col, d_row=row)

plot_data <- edges |>
mutate(
non_prof = commutes-is_prof,
prof = dis_prof,
global_prof = sum(prof) / sum(prof + non_prof),
count = prof + non_prof,

obs = prof,

116 5 Geographic Networks

exp = (global_prof * count),
resid = (obs - exp) / (exp”.7)
R

Join on d_bor for an 0-0D map.

left_join(grid |> select(area_name), by = c("o_bor" = "area_name")) |>
mutate(
bor_label = if_else(o_bor == d_bor, d_bor, ""),
bor_focus = o_bor == d_bor
) >
st_as_sf()

bbox_grid <- st_bbox(grid)

max_resid <- max(abs(plot_datas$resid))

plot_data |>
ggplot() +
geom_sf(aes(fill=resid), colour = "#616161",
size = 0.15, alpha = 0.9) +

geom_sf(data = . %>% filter(bor_focus),
fill = "transparent", colour = "#373737", size = 0.3
) +

geom_text(

data = plot_data %>% filter(bor_focus),
aes(x = bbox_grid$xmax, y = bbox_gridSymin,
label = abbreviate(o_bor, 3)),

colour = "#252525", alpha = 0.9, size = 3.5,

hjust = "right", vjust = "bottom"
) +
coord_sf(crs = st_crs(plot_data), datum = NA) +
facet_grid(-d_row ~ d_col, shrink = FALSE) +
scale_fill_distiller(palette = "RdBu", direction = -1,

limits=c(-max_resid, max_resid))

The ggplot2 spec:

o Data:
— Calculate the proportion of professional jobs in the dataset (global_prof).
— Then for each destination (workplace) borough calculate the expected
number of commutes for any OD pair by multiplying the number of jobs
contained in that OD pair by global_prof, and express the difference
between the actual number of professional jobs as a rate with a power
transform ((obs-exp) / (exp™.7)).
Take the staged dataset, and join twice on the gridmap dataset.
— Then join the with the gridded polygon file (grid) on o_bor — in this OD
map the small cells are origins.

5.4 Conclusions 117

— Finally, in the mutate() we generate a new variable identifying the
borough in focus (bor_focus), destination in this case, and a text label
variable for annotating plots (bor_tlabel).

o Encoding:

— Gridmap cells are coloured according to the calculated residuals
(fill=resid).

— Text labels for focus (workplace) boroughs are drawn in the bottom-
right corner of larger cells. Note that the coordinate space here is that
from the gridmap dataset, and so the z,y location of borough labels
is derived from the bounding box object (bbox_grid), calculated during
data staging.

o Marks: geom_sf() for drawing the small grid-cell maps; geom_text() for drawing
the labels.

o Scale: scale_fill_distiller() for a diverging colour scheme using the Color-
Brewer (Harrower and Brewer 2003) rdsu palette and made symmetrical on
0 by manually setting timits() based on the maximum residual value.

o Facets: facet_grid() for effecting the map-within-map layout.

Once the data staging and ggplot2 code for the OD map is generated, it is
very easy to adapt and extend the code to explore different assumptions. For
example, the expectation of a uniform distribution across London in the relative
number of commutes by occupation type is a flawed one since we know that
there is some variation in the proportion of professional jobs available in each
borough. In the City of London (CoL) 74% of jobs are professional whereas
in Bexley (Bxl), Havering (Hvr) and Barking and Dagenham (BaD), that
figure is ¢.30%. We can easily adapt the data staging code to instead generate
local expectations for each destination borough by moving the assignment
of global_prof into a group_by() on destination borough. The expectation is
now that the relative number of professional commutes present in any OD
pair should be proportionally equivalent to the number of professional jobs
available at that OD pair’s destination borough. Colouring cells of the OD
map according to this new quantity (Figure 5.13) exposes patterns that relate
to London’s social geography: greater than expected non-professional workers
from more affordable boroughs to the east of London and into job-rich boroughs
in central London and a reverse pattern for origin boroughs supplying greater
than expected professional workers.

5.4 Conclusions

Network data are challenging to represent, work with and analyse. It is for this
reason that visual approaches are often used in their analysis. A common pitfall
to many network visualizations is that they simply re-present that complexity

118 5 Geographic Networks

Figure 5.13: Commutes between London boroughs: difference maps by occu-
pation type assuming professionals and non-professionals distribute uniformly
within boroughs.

without exposing useful structure or insight into the phenomena being analysed.
Through an analysis of 2011 Census travel-to-work data in London, this chapter
demonstrated approaches to analysing and inferring structure in a category
of network data common to geographers: geospatial origin-destination data.
Spatially-arranged node-link diagrams are highly intuitive and can support
a kind of synoptic overview of a network, but were of limited success in
representing detailed patterns in travel-to-work within and between London
boroughs. Instead we used matrix-based views, including spatially arranged
matrices or OD Maps. As ever, the appropriateness of either approach, node-
link based or matrix-based representations, depends on data, analysis purpose
and audience.

5.5 Further Reading 119

5.5 Further Reading

For working with network data in tidyverse and ggplot2:

o Wickham, H., Navarro, D. and Lin Pedersen, T. 2023. “ggplot2: Elegant
Graphics for Data Analysis Third Edition.”, New York, NY: Springer.

For the original OD maps paper:

e« Wood, J., Dykes, J. and Slingsby, A. 2010. “Visualisation of Origins, Desti-
nations and Flows with OD Maps.” The Cartographic Journal, 47(2): 117-29.
doi: 10.1179/000870410X12658023467367.

Not about network visualization per se, but presents numerous (100!) data
graphics on London. Worth highlighting here is the use of annotations and
efficient graphical descriptions, a theme we return to in Chapter 8:

e Cheshire, J. and Uberti, O. 2016 “London, The Information Capital: 100
maps and graphics that will change how you view the city”, London, UK:
Penguin.

https://doi.org/10.1179/000870410X12658023467367

https://www.taylorandfrancis.com

6
Models

By the end of this chapter you should gain the following knowledge and
practical skills.

1 Knowledge

Be reminded of the basics of linear regression modelling.

Appreciate how data graphics can inform the process of building and
evaluating models.

Understand two categories of geographic effect in regression modelling:
spatial dependence in values and spatial non-stationarity in processes.
O Learn how graphics can be used to test for these effects and how linear
regression models can be updated to account for and further explore
them.

O
0

O

1 Practical skills

O Write ggplot2 code to generate graphics for exploring multivariate
association and presenting regression outputs (faceted scatterplots,
parallel coordinate plots, dot plots with error bars).

[J Write code to generate linear regression models in R.
0 Extract model outputs and diagnostics in a tidy manner.
O Apply functional-style programming for working over multiple model
outputs.
O Generate graphical line-up plots in ggplot2 to test regression assump-
tions.
I

6.1 Introduction

So far the analysis presented in this book has been data-driven. Having
described data in a consistent way (Chapter 2), visual analysis approaches
have been applied, informed by established visualization guidelines. Chapters 4
and 5 involved model building, but these were largely value-free models based

121

122 6 Models

on limited prior theory. This chapter is presented as a worked data analysis. We
look at a well-known dataset with a more explicit and theoretically-informed
motivation.

The chapter explores variation in voting behaviour in the UK’s 2016 referendum
on leaving the EU. You might remember that while there was a slight majority
for Leave (c. 52%), the vote varied between different parts of the country.
There were many explanations offered for why particular places voted the
way they did, often related to the demographic composition of those areas.
We will explore whether the discussed compositional demographic factors
vary systematically with area-level Leave voting. Using regression frameworks,
we will model the relative effect of each of these compositional factors in
structuring variation in the vote and construct data graphics that allow these
models and parameters to be evaluated in detail.

o . .
1 Regression primer

This chapter assumes some basic familiarity with linear regression mod-
elling. For a fuller overview, with excellent and real-world social science
examples, you may wish to consult Regression and Other Stories (Gelman,
Hill, and Vehtari 2020).

6.2 Concepts
6.2.1 Quantifying and exploring variation

In Figure 6.1 is a map and bar chart of voting in the 2016 EU referendum,
estimated at Parliamentary Constituency level (see Hanretty 2017). The values
themselves are the difference in estimated vote shares from an expectation
that the Leave vote by constituency, y; our outcome of interest, is uniformly
distributed across the country and so equivalent to the overall Great Britain
(GB) vote share for Leave of ¢. 52%. Although a slightly contrived formulation,
we could express this as an intercept-only linear regression model, where the
estimated slope (1) is ‘turned off’ (takes the value 0) and the intercept (5p) is
the GB average vote share for Leave (y):

yi =Bo+ P1+¢;

So we estimate the Leave vote in each constituency (y;) as a function of:

e [, the intercept, the GB average vote share (y) +
e (1 =0, a negated slope, +

6.2 Concepts 123

e ¢, a statistical error term capturing the difference between y;, the observed
Leave vote in a constituency, and the unobservable ‘true population’ value
of the Leave vote in each constituency

How does this relate to the idea of characterising variation? The length and
colour of each bar in Figure 6.1 is scaled according to model residuals: the
difference between y;, the observed value, and the expected value of the Leave
vote under the uniform model. The sum of these bar lengths is therefore the
total variance that we later try to account for by updating our regression
model to generate new expected values using information on the demographic
composition of constituencies.

Figure 6.1: Residuals from uniform model comparing constituency Leave
vote to GB average.

Figure 6.1 is similar to the maps that were published widely in press reports
in the aftermath of the vote, and demonstrates that there is indeed substantial
variation in Leave voting between different parts of the country. The intercept-
only model consistently underestimates the vote in Scotland and most of
London. Outside of this, constituencies voting in smaller proportions than
would be expected for Leave are distributed more sparsely in the country: the
dark red dot with surrounding red area in the east of England is Cambridge
and Cambridgeshire, constituencies in Bristol (south west), Manchester and
Liverpool (north west) and Brighton (south) are also reasonably strong red.

When evaluating the effectiveness of modelled values, there are various checks
that can be performed. A relevant check here is whether there is bias in the
residuals — whether residuals have structure that suggests they are grouped in
a way not captured by the model. Given the motivation behind our analysis, it
is no surprise that there is a geographic pattern to the residuals in Figure 6.1,
but also the non-symmetrical shape of the ‘signed’ bars in the left of the

124 6 Models

Table 6.1: Breakdown of variable types.

Census variable | Constituency %
post-industrial / knowledge economy

degree-educated with degrees +

professional occupations | ns-sec manager/professional

younger adults adults aged <44

heavy industry manufacturing and transport
diversity/values/outcomes

not good health reported fair, bad, very bad

white ethnicity white British/Irish

Christian Christian

EU-born EU-born (not UK)
metropolitan / ’big city’

own home own home

no car don’t own a car

graphic. There are more constituencies with positive values than negative; the
Leave vote is underestimated by the uniform model for 57% of constituencies,
and some constituencies have quite large negative values. The strongest vote
for Leave was Boston and Skegness with 76% for Leave, but the strongest for
Remain was Hackney North and Stoke Newington with 80% for Remain.

6.2.2 Quantifying and exploring co-variation

More interesting still is whether the pattern of variation in Figure 6.1 is
correlated with compositional factors that we think explain this variation; and
whether bias or structure in residuals exists even after accounting for these
compositional factors.

In Table 6.1 is a list of possible explanatory variables describing the de-
mographic composition of constituencies. Each variable is expressed as a
proportion of the constituency’s population. So the degree-educated variable
describes the proportion of residents in the constituency educated at least to
degree-level. Comparison across these variables is challenging due to the fact
that their ranges differ: the EU-born variable ranges from 0.6% to 17%; the
white variable from 14% to 98%. Common practice for addressing these sorts
of range problem is to z-score transform the variables so that each is expressed
in standard deviation units from its mean.

Figure 6.2 presents scatterplots from which the extent of linear association
between these demographics and Leave voting in each constituency can be
inferred. Each dot is a constituency, arranged on the x-axis according to the
value of the explanatory variable and the y-axis according to the share of
Leave vote. The scatterplots are faceted by explanatory variable and ordered
left-to-right and top-to-bottom according to correlation coefficient. The variable

6.2 Concepts 125

most heavily correlated with Leave voting is degree-education: as the share
of a constituency’s population educated at least to degree-level increases, the
share of Leave vote in that constituency decreases. An association in the same
direction, but to a lesser extent, is observed for variables representing similar
concepts: professional occupations, younger adults, EU-born, no-car and the
reverse for Christian, not-good health and heavy industry.

Figure 6.2: Scatterplots of constituency Leave vote against selected explana-
tory variables.

It is of course likely that many of the compositional characteristics of con-
stituencies vary with Leave voting in consistent ways. Parallel coordinate plots
may help visually explore this multivariate space. Whereas in scatterplots
observations are represented as points located in x- and y- axes that are or-
thogonal, in a parallel coordinate plot observations are laid out across many
parallel axes and the values of each observation encoded via a line connecting
the multiple parallel axes. In Figure 6.3 each of the thin lines is a constituency
coloured according to the recorded voting outcome — either majority Remain
(red) or Leave (blue). The first variable encoded is the size of the Leave vote,
and variables are then ordered on their linear association with Leave. Note
that we have reversed the polarity of variables such as degree-educated and
professional so that we expect more Leave (blue lines) towards the right loca-
tions of the parallel axes. That the blue and red lines are reasonably separated
suggests that there is a consistent pattern of association across many of the
demographics characteristics in constituencies voting differently on Leave and
Remain.

126 6 Models

Figure 6.3: Parallel coordinate plot of constituency Leave vote and selected
explanatory variables.

1 On parallel coordinate plots

Although parallel coordinate plots enable some aspects of association
between multiple variables to be inferred, they have several deficiencies.
Association can only be directly inferred by comparing variables that are
immediately adjacent. The order of parallel variables can greatly affect
their visual appearance. And the corollary is that visual patterns of the
plot that are salient may be incidental to the statistical features being
inferred.

6.2.3 Modelling for co-variation

Linear regression provides a framework for systematically describing the as-
sociations implied by the scatterplots and parallel coordinate plot, and with
respect to the constituency-level variation identified in Figure 6.1. Having
seen these data, the demographic variables in Figure 6.2, we can derive new
expected values of constituency-level Leave voting.

To express this in equation form, we update the uniform model such that Leave
vote is a function of the selected explanatory variables. For single-variable
linear regression, we might select the proportion of residents educated at least
to degree-level (d;1):

yi = Bo + Prdir + €

So we now estimate the Leave vote in each constituency (y;) as a function of:

6.2 Concepts 127

e o, the intercept, the GB average vote share (y) +

e 1 = [1d;1, the slope, indicating in which direction and to what extent
degree-educated is associated with Leave, +

e ¢&;, the difference between y; (the observed value) and the unobservable ‘true
population’ value of the Leave vote in that constituency (statistical error)

It is of course likely that some demographic variables account for different
elements of variation in the Leave vote than others. You will be aware that the
linear regression model can be extended to include many explanatory variables:

Yi = Bo + Prxin + ... + BrTik + &5

So this results in separate 5 coefficients for separate explanatory variables.
These coeflicients can be interpreted as the degree of association between the
explanatory variable k and the outcome variable, keeping all the other explana-
tory variables constant — or the distinct correlation between an explanatory
variable k and the outcome variable, net of the other variables included in the
model.

Figure 6.4: Outputs from multiple regression model of Leave vote by demo-
graphic composition of constituency.

In Figure 6.4 are regression coefficients () from a multiple regression model
with degree-educated, no car, white, heavy industry, EU-born and not good
health selected as explanatory variables. Coeflicients are reported as dots with
estimates of uncertainty represented as lines encoding 95% confidence intervals.
Most variables’ coefficients are in the direction that would be expected given the
associations in Figure 6.2. Net of variation in the other compositional factors,
increased levels of degree-education in a constituency has the effect of reducing
the Leave vote. The two exceptions are EU-born and white: after controlling
for variation in the other demographic variables, increased proportions of white

128 6 Models

residents reduces the Leave vote, and increased proportions of residents that
are FU-born increases the Leave vote. Since the confidence interval for white
crosses zero, this coefficient is subject to much uncertainty. Further exploration
may allow us to identify whether these counter-intuitive effects are genuine or
the result of a poorly-specified model.

6.2.4 Evaluating model bias

Our analysis becomes more interesting when we start to explore and characterise
model bias: any underlying structure to the observations that is less well
accounted for by the model.

For area-level regression models such as ours, it is usual for residuals to exhibit
some spatial autocorrelation structure. For certain parts of a country a model
will overestimate an outcome given the relationship implied between explana-
tory and outcome variables; for other parts the outcome will be underestimated.
This might occur due to:

o Spatial dependence in variable values over space. We know that the geography
of GB is quite socially distinctive, so it is reasonable to expect, for example,
the range in variables like heavy industry and white to be bounded to economic
regions and metropolitan-versus-peripheral regional contexts.

o Spatial nonstationarity in processes over space. It is possible that associations
between variables might be grouped over space — that the associations vary for
different parts of the country. For example, high levels of EU-born migration
might affect political attitudes, and thus area-level voting, differently in
different parts of the country.

We can test for and characterise spatial autocorrelation in residuals by perform-
ing a graphical inference test, a map line-up (Beecham et al. 2017; Wickham
et al. 2010) against a null hypothesis of complete spatial randomness (CSR).
A plot of real data, the true map of residuals, is hidden amongst a set of
decoys; in this case maps with the residual values randomly permuted around
constituencies. If the real map can be correctly identified from the decoys,
then this lends statistical credibility to the claim that the observed data are
not consistent with the null of CSR. Graphical line-up tests have been used in
various domains, also to test regression assumptions (Loy, Hofmann, and Cook
2017). The map line-up in Figure 6.5 demonstrates that there is very obviously
spatial and regional autocorrelation in residuals, and therefore structure that
our regression model misses.

There are different ways of updating our model according to this geographic
context. We have talked about patterning in residuals as being spatial, with
values varying smoothly and continuously depending on location. This might
be the case, but given the phenomena we are studying, it also plausible that
distinct contexts are linked to regions. The residuals in Figure 6.5 — the real
being plot 3 — do seem to be grouped by regional boundaries, particularly

6.2 Concepts 129

Figure 6.5: Map line-up of residuals in which the ‘real’ dataset is presented
alongside 8 decoy plots generated under assumption of CSR.

Scotland looks categorically different. This suggests that geographic context
might be usefully represented as a category rather than a continuous variable
(location in z,y). We will therefore update our model representing geographic
context as a regional grouping and cover approaches both to modelling spatial
dependence in values and spatial nonstationarity in processes.

6.2.5 Geographic context as grouped nuisance term

A common approach to treating geographic dependence in the values of vari-
ables is to model geographic context as a Fixed Effect (FE). A dummy variable
is created for each group (region in our case), and every region receives a
constant. Any group-level sources of variation in the outcome are collapsed
into the FE variable, which means that regression coefficients are not com-
plicated by this more messy variation — they now capture the association
between demographics and Leave after adjusting for systematic differences
in the Leave vote due to region. So, for example, we know that Scotland is
politically different from the rest of GB and that this appears to drag down the
observed Leave vote for its constituencies. The constant term on region adjusts
for this and prevents the estimated regression coefficients (inferred associations
between variables) from being affected. Also estimated via the constant is the
‘base level” in the outcome for each element of the group — net of demographic
composition, the expected Leave vote in each region.

130 6 Models

The linear regression model, extended with the FE term (v;), for a single
variable model:

Yi =75 + Pz +&

So we now estimate the Leave vote in each constituency (y;) as a function of:

e 7;, a constant term similar to an intercept for region j, +

o 1 = B1xi1, the slope, indicating in which direction and to what extent some
explanatory variable measured at constituency ¢ is associated with Leave, +

e ¢&;, the difference between y; (the observed value) at constituency i and the
unobservable true population value of the Leave vote in that constituency
(statistical error)

Presented in Figure 6.6 are updated regression coefficients for a multivariate
model fit with a FE on region. In the left panel are the FE constants. Together
these capture the variance in Leave vote between regions after accounting
for demographic composition. London is of particular interest. When initially
analysing variation in the vote, constituencies in Scotland and London were
distinctive in voting in much smaller proportions than the rest of the country for
Leave. Given the associations we observe with Leave voting and demographic
composition, however, if we were to randomly sample two constituencies that
contain the same demographic characteristics, one in London and one in
another region (say North West), on average we would expect the Leave vote
for the London constituency to be higher (~60%) than that sampled from
North West (~51%). A separate and more anticipated pattern is that Scotland
would have a lower Leave vote (~38%) — that is, net of demographics there is
some additional context in Scotland that means Leave is lower than in other
regions.

In the right panel are the regression coefficients net of this between-region
variation. Previously the white variable had a slight negative association with
Leave, counterintuitively. Now the white variable has a direction of effect that
conforms to expectation — net of variation in other demographics, increased
proportions of white residents is associated with increased Leave voting. For
another variable, FU born, the coefficient still unexpectedly suggests a positive
association with Leave.

6.2.6 Geographic context as grouped effects

Rather than simply allowing a constant term to vary, we can update the linear
regression model with an interaction term (5; ja:“) that permits the coefficient
estimates to vary depending on region. This means we get a separate constant
term and coefficient estimate of the effect of each variable on Leave for every
region.

6.2 Concepts 131

Figure 6.6: Output from a multiple regression model of Leave voting against
the demographic composition of constituencies, with a Fixed Effect term on
region.

Yi =V + Brjria + &

e 7;, a constant term similar to an intercept for region j, +

o [1;%1, the region-specific slope, indicating in which direction and to what ex-
tent some demographic variable at constituency ¢ and in region j is associated
with Leave, +

e ¢g;, the difference between y; (the observed value) at constituency i and the
unobservable true ‘population’ value of the Leave vote in that constituency
(statistical error)

In Figure 6.7 are region-specific coefficients derived from a multivariate model
fit with this interaction term. In each region, degree-educated has a negative
coefficient and with reasonably tight uncertainty estimates, or at least CIs that
do not cross 0. The other variables are subject to more uncertainty. The no-car
variable is also negatively associated with Leave, a variable we thought may
separate metropolitan versus peripheral contexts, but the strength of negative
association, after controlling for variation in other demographic factors, does
vary by region. The heavy industry variable, previously identified as being
strongly associated with Leave, has a clear positive association only for London
and to a much lesser extent for North West and Wales (small coefficients). The
EU-born variable is again the least consistent as it flips between positive and
negative association when analysed at the regional-level: after controlling for
variation in other demographic characteristics, it is positively associated with
Leave for North West, Scotland, South West, but negatively associated with
Leave for the North East, though with coefficients that are subject to much
variation.

132 6 Models

Figure 6.7: Output from multiple regression model of Leave vote by demo-
graphic composition of constituency with a Fixed Effect and interaction term
on region.

6.2.7 Estimate volatility and alternative modelling
approaches

Our treatment of regression frameworks has in this chapter been reasonably
breezy; there are problems that we have not discussed. Introducing FE and
interaction terms without adding data reduces statistical power as data are
heavily partitioned. Given the fact that our data are hierarchically structured
(constituencies sit within regions), hierarchical or multi-level modelling may
be more appropriate to this sort of regional grouping. Multi-level modelling
uses partial pooling, borrowing data to make estimated coefficients more
conservative, less locally biased, where there are comparatively few observations
in particular groupings (see Gelman and Hill 2006). There are also many
ways in which associations between values can be modelled continuously over
space. For the case of geographically weighted regression (GWR) (Brunsdon,
Fortheringham, and Charlton 2002), local regression coefficients for each spatial
unit. Geographically Weighted-statistics enable spatial non-stationarity in
process to be flexibly explored and characterised — in this case study, interesting
and explainable directions of effect between Leave voting and EU-born (see
Beecham, Slingsby, and Brunsdon 2018). Since GWR involves generating many
hundreds of parameter estimates, visual approaches are as ever primarily used
in their interpretation and analysis (see Dykes and Brunsdon 2007).

6.3 Techniques 133

6.3 Techniques

The technical element to this chapter demonstrates how linear regression
models can be specified in R, including approaches to extract model summaries
and diagnostics, and of course how to represent and evaluate them using data
graphics. Data recording estimated vote shares for Leave by Parliamentary
Constituency, as well as constituency-level Census demographics, were originally
collected from the partlitools package.

6.3.1 Import, transform, explore

o Download the o6-template.qmd! file for this chapter, and save it to your vis4sds
project.

e Open your visasds project in RStudio, and load the template file by clicking
File > Open File ... > 06-template.qmd.

The template file lists the required packages: tidyverse, sf and tidymodels

for extracting model outputs. The processed data with selected 2011 Census
demographics can be loaded from the book’s accompanying data repository.
In this folder is also a .geojson file containing a hexagon cartogram of UK
parliamentary constituencies, derived from Open-Innovations’ Hexason format.

Explanatory variables describing the demographic composition of constituencies
are recorded as proportions. In order to support comparison in the multivariate
models, they must be z-score transformed. The distance between observed
values for each 2011 Census variable is expressed in standard deviation units
from the mean across constituencies for that variable. Our approach is to
perform this transformation on each explanatory variable before piping into
the model specification. This is achieved with across(). The first argument is
the set of columns to which you would like the same function to be applied,
and the second is the function you would like to apply. Remembering that
mutate() works over columns of a data frame, and that a single column of a
data frame is a vector of values, the notation .x is used to access each element
of the columns being worked across.

z-score transform explanatory variables before model
specification.
cons_data |>
mutate(
across(
.cols=c(younger:heavy_industry),
.fns=~(.x-mean(.x))/sd(.x)

1 https://vis4sds.github.io/vis4sds/files/06-template.qmd

https://vis4sds.github.io/vis4sds/files/06-template.qmd

134 6 Models

)

<some-model-specification-code>

In Figure 6.2 and Figure 6.3 associations between candidate explanatory
variables and Leave are explored using scatterplots and parallel coordinate plots
respectively. To avoid cluttering this section, documented code for reproducing
these plots is in the e6-template.qnd file for this chapter and inserted below, but
without detailed explanation.

Data staging and ggplot2 code for PCPs ——-——-——-—————————-——-————

Pull out and order variable names on their correlation with Leave.
order_vars <- cons_data |>
mutate(across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x))) |[>
pivot_longer (
cols=younger:heavy_industry, names_to="expl_var", values_to="prop"
E
group_by(expl_var) |>
summarise(cor=cor(leave,prop)) |> ungroup() |> arrange(cor) |>
pull(expl_var)
Create staged dataset for plotting.
plot_data <- cons_data |>
mutate(
majority=if_else(leave>.5, "Leave", "Remain"),
across(c(leave, younger:heavy_industry), ~(.x-mean(.x))/sd(.x)),
decile=ntile(leave, 10),
is_extreme = decile > 9 | decile < 2
> P>
Select out variables needed for plot.
select(
majority, is_extreme, constituency_name, leave,
degree, professional, younger, eu_born, no_car, white, own_home,
christian, not_good_health, heavy_industry
e
Change polarity in selected variables.
mutate(
degree=-degree, professional=-professional, younger=-younger,
eu_born=-eu_born, no_car=-no_car
) 1>
Gather explanatory variables for along rows.
pivot_longer(

cols= c(leave:not_good_health), names_to="var", values_to="z_score"

6.3 Techniques 135

) >
Recode new explanatory variable as factor ordered according to
known assocs. Reverse order here as coord_flip() used in plot.
mutate(
var=factor(var, levels=c("leave", order_vars)),
var=fct_rev(var)
)
Plot PCP.
plot_data |>
ggplot(
aes(x=var, y=z_score, group=c(constituency_name),
colour=majority)) +
geom_path(alpha=0.15, linewidth=.2) +
scale_colour_manual(values=c("#2166ac", "#b2182b")) +
coord_flip()

Task

While the template provides code for reproducing the faceted scatterplots
and parallel coordinate plots, there are some omissions. You will notice
that in Figure 6.3 two very high Leave and Remain constituencies are
highlighted, using thicker red and blue lines and labelling.

Can you update the ggplot2 spec to create a similar effect? There
are different ways of doing this, but you may want to add a separate
geom_segment () layer filter()-ed on these selected boroughs. The text
annotations may be generated manually using annotate(), or derived from
data using geom_text().

6.3.2 Model tidily

The most straightforward way of specifying a linear regression model is with
the wm() function and summary() to extract regression coefficients.

model <- cons_data |>
mutate(
across(
.cols=c(younger:heavy_industry),
.fns=~(.x-mean(.x))/sd(.x)
)
) %>%

Im(leave ~ degree, data=.)

136 6 Models

summary (model)

Call:

lm(formula = leave ~ degree, data = .)

#

Residuals:

Min 1Q Median 3Q Max

-0.25521 -0.02548 0.01957 0.05143 0.11237

#

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.520583 0.002896 179.78 <2e-16 *x*

degree -0.088276 0.002898 -30.46 <2e-16 *x*

oo

Signif. codes: 0 ‘*x**’ 0.001 ‘x*’ 0.01 ‘*’ 0.05 ¢.” 0.1 ¢ ’ 1
#

Residual standard error: 0.07279 on 630 degrees of freedom
Multiple R-squared: 0.5956, Adjusted R-squared: 0.595

F-statistic: 927.9 on 1 and 630 DF, p-value: < 2.2e-16

With tidymodels, specifically the broom package, we can extract model outputs
in a format that adheres to tidy data (Wickham 2014).

e tidy() returns estimated coefficients as a data frame.

tidy (model)

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <db1> <db1> <dbl> <db1>

1 (Intercept) ©,521, 0.00290 180. ©O

2 degree -0.0883 0.00290 -30.5 5.67e-126

e glance() returns a single row containing summaries of model fit.

glance(model)

A tibble: 1 x 12
r.sq adj.r.sq sigma stat p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <db1l> <dbl> <dbl>

1 0.596 0.595 0.0728 928.5.67e-126 1 760 -1514. -1501.
3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

e augment() returns a data frame of residuals and predictions (fitted values) for
the model realisation.

6.3 Techniques 137

augment (model)
A tibble: 632 x 8

leave degree .fitted .resid .hat .sigma .cooksd .std.resid
<db1l> <db1> <dbl> <db1l> <db1l> <dbl> <db1> <db1>
1 0.579 -0.211 0.539 0.0398 0.00165 0.0728 0.000247 0.547
2 0.678 -0.748 0.587 0.0914 0.00247 0.0728 0.00195 1.26

3 0.386 1.63 0.376 0.00957 0.00582 0.0729 0.0000509 0.132
4 0.653 -0.964 0.606 0.0473 0.00306 0.0728 0.000648 0.650
#

The advantage of generating model diagnostics and outputs that are tidy is
that it eases the process of working with many model realisations. This is a
common requirement for modern data analysis, where statistical inferences
are made empirically from resampling. For example, we may wish to generate
single-variable linear regression models separately for each selected explanatory
variable. We could use these outputs to annotate the scatterplots in Figure 6.2
by their regression line and colour observations according to their residual
values, distance from the regression line. These models can be generated
with reasonably little code by making use of the package broom and a style of
functional programming in R, which is supported by the purrr package.

Example code:

single_model_fits <- cons_data |>
mutate(across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x))) |>
pivot_longer (
cols=younger:heavy_industry,
names_to="expl_var", values_to="z_score"
ME
Nest to generate list-column by expl_var.
nest(data=-expl_var) |>
mutate(
Use map() to iterate over the list of datasets.
model = map(data, ~lm(leave ~ z_score, data = .x)),
glance() for each model fit.
fits = map(model, glance),
tidy() for coefficients.
coefs = map(model, tidy),
augment() for predictions/residuals.

values=map (model, augment),

single_model_fits |[>

Unnest output from glance.

138 6 Models

unnest(cols = fits) |>
Remove other list-columns.
select(-c(data, model))

A tibble: 10 x 15

expl_var r.squared adj.r.sq sigma stat p.value df logLik AIC

<chr> <db1> <dbl> <dbl> <dbl> <db1l> <dbl> <dbl> <dbl>

1 younger 0.289 0.288 0.0965 257. 1.05e- 48 1 582. -1158.

2 own_home 0.185 0.184 0.103 143. 7.42e- 30 1 B39, =ilE7il,

3 no_car 0.157 0.155 0.105 117. 3.81e- 25 1 528. -1050.

4 white 0.169 0.168 0.104 128. 3.79e- 27 1 582, =1lE59,

5 eu_born 0.233 0.232 0.100 191. 3.42e- 38 1 558. -1110.

6 christian 0.238 0.236 0.100 196. 4.95e- 39 1 560. -1114.

7 professi... 0.320 0.319 0.0944 296. 1.08e- 54 1 596. -1186.
8 degree 0.596 0.595 0.0728 928. 5.67e-126 1 760. -1514.

9 not_good... 0.316 0.315 0.0947 291. 5.93e- 54 1 594, -1182.
10 heavy_in... 0.504 0.503 0.0806 640. 5.43e- 98 1 696. -1385.

6 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>,

nobs <int>, coefs <list>, values <list>

Code description:

1. Setup: In order to generate separate models for separate explanatory
variables, we need to generate nested data frames. These are data
frames stored in a special type of column (a list-column) in which
the values of the column is a list of data frames — one for each
explanatory variable over which we would like to compute a model.
You can think of parameterising nest() in a similar way to group_by ().
We first pivot_longer() to generate a data frame where each obser-
vation contains the recorded Leave vote for a constituency and its
corresponding z_score value for each explanatory variable. There are
10 explanatory variables and so nest() returns a data frame with
the dimensions 1ex2 — a variable identifying the explanatory variable
on which the model is to be built (expl_var) and a list-column, each
element containing a data frame with the dimensions 632x13.

2. Build model: In mutate(), purrr’s map() function is used to iterate over
the list of datasets and fit a model to each nested dataset. The new
column model is a list-column this time containing a list of model
objects.

3. Generate outputs: Next, the different cuts of model outputs can be
made using glance(), tidy(), augment(), with map() to iterate over the
list of model objects. The new columns are now list-columns of data
frames containing model outputs.

4. Extract outputs: Finally we want to extract the values from these

6.3 Techniques 139

nested data. This can be achieved using unnest() and supplying to
the cols argument the names of the list-columns from which we want

to extract values.

6.3.3 Plot models tidily

In Figure 6.4 estimated regression coefficients are plotted from a multivariate
model, annotated with 95% Confidence Intervals. The ggplot2 specification is
reasonably straightforward.

The code for Figure 6.4:

model <- cons_data |>
mutate(across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x))) %>%
Im(leave ~ degree + eu_born + white + no_car + not_good_health +

heavy_industry, data=.)

tidy(model) |>
filter(term != "(Intercept)") |>
ggplot(
aes(x=reorder (term, -estimate),
y=estimate, ymin=estimate-1.96xstd.error,
ymax=estimate+1l.96xstd.error)
) +
geom_pointrange() +
coord_flip()

The plot specification:

1. Data: A data frame of model coefficients extracted from the multi-
variate model object (model) using tidy().

2. Encoding: y-position varies according to the size of the coefficient
estimate and the 95% confidence intervals, derived from std.error
and encoded using ymin and ymax parameters.

3. Marks: geom_pointrange(), which understands ymin and ymax, for the
dots with confidence intervals.

4. Setting: coord_flip() to make variable names easier to read.

6.3.4 Extend model terms

To include a Fixed Effect (FE) term on region, the region variable is simply
added as a variable to im(). However, we must convert it to a factor variable; this
has the effect of creating dummies on each value of region. Default behaviour
within wm() is to hold back a reference value of region with FE regression
coefficients describing the effect on the outcome of a constituency located

140 6 Models

in a given region relative to that reference region. So the reference region
(intercept) in the model below is East Midlands — the first in the factor to
appear alphabetically. The signed coefficient estimates for regions identifies
whether, after controlling for variation in demographics, the Leave vote for a
particular region is expected to be higher or lower than this.

cons_data |>
mutate(
across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x)),
region=factor (region)) %>%
Ilm(leave ~ region + degree + eu_born + white + no_car +

not_good_health + heavy_industry, data=.) |>

tidy ()
A tibble: 17 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <db1>
1 (Intercept) 0.530 0.00581 91,3 0
2 regionEast of England 0.00363 0.00787 0.462 6.45e- 1
3 regionLondon 0.0654 0.00948 6.90 1.30e-11
4 regionNorth East 0.00482 0.00945 0.510 6.10e- 1
5 regionNorth West -0.0200 0.00728 -2.75 6.12e- 3
6 regionScotland -0.145 0.00843 -17.2 1.28e-54
7 regionSouth East 0.00377 0.00752 0.502 6.16e- 1
8 regionSouth West -0.0233 0.00789 -2.95 3.26e- 3
9 regionWales -0.0547 0.00860 -6.36 3.87e-10
10 regionWest Midlands 0.0236 0.00745 3.17 1.5%e- 3
11 regionYorkshire 0.0112 0.00762 1.47 1.41le- 1
12 degree -0.0772 0.00339 -22.8 1.30e-83
13 eu_born 0.0163 0.00308 5,208 1 72e=
14 white 0.0303 0.00314 9.66 1.18e-20
15 no_car -0.0336 0.00292 -11.5 6.50e-28
16 not_good_health 0.0102 0.00331 3.07 2.24e- 3
17 heavy_industry 0.0132 0.00266 4.96 9.23e- 7

We want our model to represent a dummy for every region, and so we add
-1 to the specification. Doing this removes the intercept or reference region,
making R? no longer meaningful.

cons_data |>
mutate(
across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x)),
region=factor (region)) %>%

lm(leave ~ region + degree + eu_born + white + no_car +

6.3 Techniques 141

not_good_health + heavy_industry -1, data=.) |>
glance()

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0.995 0.995 0.0371 7625. 0 17 1193. -2351.

H* o H H H

3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

To include an Interaction on region, we need to set a variable that will be used
to represent these regional constants (cons), and the Interaction is added with
the notation :.

model <- cons_data |>
mutate(
across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x)),
region=as.factor(region), cons=1) %>%
Im(leave ~ 0 +
(cons + degree + eu_born + white + no_car + not_good_health +
heavy_industry): (region),
data=.
)

The model updated with the regional Interaction term results in many more
coefficients that are, as discussed, somewhat unstable. To plot them, as in
Figure 6.7, we minimally update the code used to generate the previous model
outputs.

tidy (model) |>
separate(term, into= c("term", "region"), sep=":") |>
mutate(region=str_remove(region,"region")) |>
filter(term!="cons") |>
ggplot() +
geom_col (aes(x=reorder (term, -estimate), y=estimate), alpha=.3)+
geom_pointrange (aes(
x=reorder (term, -estimate),y=estimate,
ymin=estimate-1.96xstd.error, ymax=estimate+1l.96*std.error
) +
geom_hline(yintercept = 0, size=.2)+
facet_wrap(~region) +
coord_flip()

142 6 Models

The plot specification:

1. Data: A data frame of model coefficients extracted from the multi-
variate model object using tidy(). To make clean plot labels we need
to remove unnecessary text in the term variable (e.g. “cons:regionEast
Midlands”). separate() allows us to split this column on : and then
str_remove() is quite obvious. We do not wish to plot the FE constants
and so filter() them out.

2. Encoding: y-position varies according to the size of the coefficient
estimate and the 95% confidence intervals, in exactly the same way
as for Figure 6.4.

3. Marks: geom_pointrange(), encoded as in Figure 6.4. The only addi-
tion is light bars in the background (geom_col()). This seems to aid
interpretation of the direction and size of the coefficients.

4. Fuacets: facet_wrap() on region in order to display coefficients esti-
mated separately for each region.

6.3.5 Evaluate models with lineups

In Figure 6.8 is a map line-up of the residuals from FE-updated model — our
expectation is that these residuals should no longer be spatially autocorrelated,
since we collapse regional varation into our FE term.

Using functional-style programming, and index{packages!tidymodels} tidymodels,
plot lineups can be generated with surprisingly paired-back code. First generate
a model object and extract residuals from it, again making use of nest(), map()
and augment():

model <- cons_data |>
select(-c(population, population_density)) |>
mutate(
across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x)),
type="full_dataset", region=as.factor(region)
) |>
nest(data=-type) |>
mutate(
Include “-1" to eliminate the constant term and include
a dummy for every area.
model=map (data,
~lm(leave ~ region + degree + eu_born + white + no_car +
not_good_health + heavy_industry -1, data=.x)
)

augment() for predictions / residuals.

6.3 Techniques 143

Figure 6.8: Map line-up of residuals from model with Fixed Effect on region.
The ‘real” dataset is presented alongside 8 decoy plots generated by randomly
permuting the observed residuals around constituencies. Adding the FE term
has addressed some of the systematic over- and under-estimation of the vote
between regions (compare for example Figure 6.5). There is nevertheless
obvious spatial autocorrelation, plot 2 being the real data. Further analysis,
for example of the constituencies for which Leave is particularly over- and
under-represented, may be instructive.

values=map(model, augment)

Next, generate permuted data by randomly shuffling residual values around
constituencies. To do this requires some knowledge of the rsample package and
its functions. We extract residuals from the 1ist-column named values, remove
redundant list-columns (with select()) and then unnest() on the original data
and the new resids field to return to a dataset where each row is a constituency,
but now containing residual values for the multivariate model. From here,
we use the permutations() function from rsamptle to shuffle the constituency ID
column (pconi9cd) randomly around, generating eight permuted datasets and
appending the real data (apparent=Trug). This results in a new data frame where
each row contains a permuted dataset, stored in a list-column named splits
and labelled via an id column. We need to map() over splits to convert each
split object into a data frame, using rsample’s analysis() function. From here,
we unnest() to generate a dataset where each row is a constituency and its
corresponding residual value (real or shuffled) for a given permutation 1d.

144 6 Models

permuted_data <- model |>
mutate(
resids=map(values, ~.x |> select(.resid))
) |>
select(-c(model, values)) |>
unnest(cols=c(data,resids)) |>
select(pconl9cd, .resid) |>
permutations(permute=c(pconl9cd), times=8, apparent=TRUE) |>
mutate(data=map(splits, ~rsample::analysis(.))) |>
select(id, data) |>

unnest(cols=data)

Now that we have the permuted dataset, the lineup can be generated straight-
forwardly with standard ggplot2 code:

Store max value of residuals for setting limits in map colour scheme.
max_resid <- max(abs(permuted_data$.resid))
Store vector of permutation IDs for shuffling facets in the plots.

ids <- permuted_data |> pull(id) |> unique()

cons_hex |>
select(cons_code, region) |>
inner_join(permuted_data, by=c("cons_code"="pcon19cd")) |>
mutate(id=factor(id, levels=sample(ids))) |>
ggplot() +
geom_sf(aes(fill=.resid), colour="#636363", linewidth=0.05)+
geom_sf(
data=. %>% group_by(region) %>% summarise(),
colour="#636363", linewidth=0.2, fill="transparent"
)+
facet_wrap(~id, ncol=3) +
scale_fill_distiller(palette="RdBu", direction=1,
limits=c(-max_resid, max_resid), guide="none")

The plot specification:

1. Data: inner_join the permuted data on the simple features file con-
taining the hexagon cartogram boundaries (cons_hex). To generate
the lineup we facet_wrap() on the permutation id. By default ggplot2
will draw facets in a particular order — determined either by the
numeric or alphabetical order of the facet variable’s values, or by an
order determined by a factor variable. Each time we plot the lineups,
we want the order in which the real and decoy plots are drawn to
vary. Therefore we convert id to a factor variable and shuffle the

6.4 Conclusion 145

levels (the ordering) around, using the sample() function on a vector
of permutation IDs (ids) before piping to ggplot(). Note that we also
record the maximum absolute value of the residuals to ensure that
they are coloured symmetrically on 0 (max_resid). Finally, you may
notice there are two geom_sf() calls in the plot specification. The
second draws regional boundary outlines across each plot. This is
achieved by collapsing the hexagon data on region (using group_by ()
and summar'ise()).

2. FEncoding: hexagons are filled according to the residual values
(fill=.resid).

3. Marks: geom_sf() for drawing the hexagon outlines. The first geom_sf
colours each constituency on its residual value. The second does not
encode any data values — notice there is no aes() — and is simply
used to draw the region outlines.

4. Fuacets: facet_wrap() on region in order to display coefficients esti-
mated separately for each region.

5. Scale: scale_fill_distiller() for ColorBrewer (Harrower and Brewer
2003) scheme, using the RdBu palette and with tlimits set to
max_resid.

6. Setting: The linewidth parameter of the hexagon outlines is varied so
that the regional outlines in the second call to geom_sf() appear more
salient. Also here, a transparent fill to ensure that the regional
outlines do not occlude the encoded residuals.

6.4 Conclusion

This chapter demonstrated how visual and computational approaches can be
used together in a somewhat more ‘traditional’ area-level regression analy-
sis. Associations between constituency-level Leave voting in the UK’s 2016
EU Referendum and selected variables describing the demographic and socio-
economic composition of constituencies were explored, with data graphics
used to characterise bias in the generated models — to identify geographic
and regional groupings that our early models ignore. Two classes of model
update for addressing this geographic grouping were covered: those that treat
geographic dependence in the values of variables as a nuisance term that is to
be quantified and controlled away, and those that explicitly try to model for
geographic grouping in processes. We introduced some initial techniques for
dealing with both, treating geography as a categorical variable: a Fixed Effect
term to assess regional dependence and Interaction term to assess regional
non-stationarity. Importantly, the chapter reused some of the dplyr and func-
tional programming code templates instrumental for working over models.
There was a step-up in code complexity. Hopefully you will see in the next

146 6 Models

chapter that this sort of functional programming style (Wickham, Cetinkaya-
Rundel, and Grolemund 2023) greatly aids the process of performing and
working with resampled datasets, a key feature of modern computational data
analysis.

6.5 Further Reading

An area-level analysis of the Brexit vote:

¢ Beecham, R., Williams, N. and Comber, L. 2020. “Regionally-structured
explanations behind area-level populism: An update to recent ecological
analyses.” PLOS One, 15(3): €0229974. doi: 10.1371/journal.pone.0229974.

On modelling for geographic dependence and non-stationarity:

e Comber, A., Brunsdon, C., Charlton, M. et al. 2023. “A route map for
successful applications of Geographically Weighted Regression.” Geographical
Analysis, 55 (1): 155-178. doi: 10.1111/gean.12316.

o Wolf, L. J. et al., 2023. “On Spatial and Platial Dependence: Examining
Shrinkage in Spatially Dependent Multilevel Models.” Annals of the American
Association of Geographers, 55(1): 1-13. doi: 10.1080,/24694452.2020.1841602.

The original graphical inference paper:

¢ Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.K., Swayne, D. F. and
Wickham, H. 2010. “Statistical Inference for Exploratory Data Analysis and
Model Diagnostics.” Royal Society Philosophical Transactions A, 367:4361—
83. doi: 10.1098/rsta.2009.0120.

A guide to model building in the tidyverse:

e Ismay, C. and Kim, A. 2020. “Statistical Inference via Data Science: A
ModernDive into r and the Tidyverse”, New York, NY: CRC Press. doi:
10.1201/9780367409913.

o Kuhn, M. and Silge, J. 2023. “Tidy Modelling with R.”, Sebastopol, CA:
O’Reilly.

A quick guide to functional programming in R and tidyverse:

o Wickham, H., Cetinkaya-Rundel, M., Grolemund, G. 2023, “R for Data
Science, 2nd Edition”, Sebastopol, CA: O’Reilly.
— Chapter 25, 26.

https://doi.org/10.1371/journal.pone.0229974
https://doi.org/10.1111/gean.12316
https://doi.org/10.1080/24694452.2020.1841602
https://doi.org/10.1098/rsta.2009.0120
https://doi.org/10.1201/9780367409913

7

Uncertainty

By the end of this chapter you should gain the following knowledge and
practical skills.

1 Knowledge

0 Appreciate the main challenges and objectives of uncertainty represen-
tation.

0 Learn how visualization techniques can be used to support ‘frequency
framing’.

O Understand how parameter uncertainty due to random fluctuation can
be estimated computationally.

1 Practical skills

[0 Generate estimates of parameter uncertainty using bootstrap resam-
pling.

O Apply functional-style programming for working over bootstrap resam-
ples.

O Write ggplot2 code to create uncertainty visualizations: icon arrays,
risk theatres, gradient bars, ensemble and hypothetical outcome plots.

7.1 Introduction

Uncertainty is a key preoccupation of those working in statistics and data
analysis. A lot of time is spent providing estimates for it, reasoning about it and
trying to take it into account when making evidence-based claims and decisions.
There are many ways in which uncertainty can enter a data analysis and many
ways in which it can be conceptually represented. This chapter focuses mainly
on parameter uncertainty: quantifying and conveying the different possible
values that a quantity of interest might take. It is straightforward to imagine
how visualization can support this. We can use data graphics to represent

147

148 7 Uncertainty

different values and give greater emphasis to those for which we have more
certainty — to communicate or imply levels of uncertainty in the background.
Such representations are nevertheless quite challenging to execute. In Chapter 3
we learnt that there is often a gap between the visual encoding of data and its
perception. There is a tendency in standard data graphics to imbue data with
marks that over-imply precision. We will consider research in Cartography
and Information Visualization on uncertainty representation, before exploring
and applying techniques for visually encoding parameter uncertainty. We will
do so using STATS19 road safety data, exploring how injury severity rates in
pedestrian-vehicle crashes vary over time and by geographic area.

7.2 Concepts

7.2.1 Uncertainty visualization

Cartographers and Information Visualization researchers have been concerned
for some time with wvisual variables, or visual channels (Munzner 2014), that
might be used to encode uncertainty information. Figure 7.1 displays several of
these. Ideally, visual variables should be intuitive, logically related to notions
of precision and accuracy, while also allowing sufficient discriminative power
when deployed in data dense visualizations.

Figure 7.1: Visual variables that can be used to represent levels of uncertainty
information. Sketchy rendering is generated with Rough.js, an implementation
of the work published in Wood et al. (2012).

Kinkeldey, MacEachren, and Schiewe (2014) provides an overview of empiri-
cal research into the effectiveness of proposed visual variables against these
criteria. As intuitive signifiers of uncertainty, or lack of precision, fuzziness (not

7.2 Concepts 149

encoded in Figure 7.1) and location have been shown to work well. Slightly
less intuitive, but nevertheless successful in terms of discrimination, are size,
transparency and colour value. Sketchiness is another intuitive signifier pro-
posed in Boukhelifa et al. (2012). As with many visual variables, sketchiness is
probably best considered as an ordinal visual variable to the extent that there
is a limited range of sketchiness levels that can be discriminated. An additional
feature of sketchiness is its sense of informality. This may be desirable in
certain contexts, less so in others (see Wood et al. 2012 for further discussion).

When thinking about uncertainty visualization, a key guideline is that:

“Things that are not precise should not be encoded with symbols
that look precise.”

Much discussed in recent literature on uncertainty visualization (e.g. Padilla,
Kay, and Hullman 2021) is the US National Weather Service’s (NWS) (NHC
2023) cone graphic (Figure 7.2). The cone starts at the storm’s current location
and spreads out to represent the modelled projected path of the storm. The
main problem is that the cone implies the storm is expanding as it moves
away from its current location, when this is not the case. In fact there is more
uncertainty in the areas that could be affected by the storm the further away
those areas are from the storm’s current location. The second problem is that
the cone uses strong lines that imply precision. The temptation is to think
that anything contained by the cone is unsafe and anything outside of it is
safe. This is of course not what is suggested by the model. Rather, that areas
not contained by the cone are beyond some chosen threshold probability. You
will notice that the graphic in Figure 7.2 is annotated with a guidance note to
discourage such false interpretation.

In Van Goethem et al’s (2014) redesign, colour value is used to represent four
binned categories of storm probability suggested by the model. Greater visual
saliency is therefore conferred to locations where there is greater certainty.
The state boundaries are also encoded somehwat differently. In Figure 7.3 US
states are symbolised using a single line generated via curve schematisation
(Van Goethem et al. 2014). The thinking here is that hard lines in maps tend
to induce binary judgements. If the cone is close to but not overlapping a state
boundary, for example, should a state’s authorities prepare and organise a
response any differently from a state whose boundary very slightly overlaps
the cone? Context around states is therefore introduced in the redesign, but in
a way that discourages binary thinking; precise inferences of location are not
possible as the state areas and borders are very obviously not exact.

150 7 Uncertainty

Figure 7.2: National Hurricane Center cone design showing probable track
of the centre of a cyclone. Cone graphic re-printed with permission, credit
National Oceanic and Atmospheric Administration/National Weather Service.

Figure 7.3: Permitted author edited reproduction of Van Goethem et al’s
(2014) design for probable cyclone track.

7.2.2 Frequency framing

For practical reasons the rest of the chapter considers how these general
principles for uncertainty representation might be applied to a single aspect
of uncertainty: quantifiable parameter uncertainty. Parameters of interest are
often probabilities or relative frequencies — ratios and percentages describing
the probability of some event happening. It is notoriously difficult to develop
intuition around these sorts of relative frequencies, and so data graphics can
usefully support their interpretation.

7.2 Concepts 151

In our STATS19 road crash dataset, a parameter of interest is the pedestrian
injury severity rate, or the proportion of all pedestrian crashes that result in
serious or fatal injury (KSI). We might wish to compare the injury severity
rate of crashes taking place between two local authority areas, say Bristol
and Sheffield. There is in fact quite a difference in the injury severity rate
between these two local authorities. In 2019, 35 out of 228 reported crashes
(15%) in Bristol were KSI, while for Sheffield this figure was 124 out of 248
reported crashes (50%). This feels like quite a large difference, but it is difficult
to imagine or experience these differences in probabilities when written down
or encoded visually using relative bar length in standardised bar charts.

]

=II. =

[1 []] |

Figure 7.4: Icon array displaying injury severity rates for Pedestrian-Vehicle
crashes.

Icon arrays are used in public health communication and have been demon-
strated to be effective at communicating probabilities of event outcomes. They
offload the thinking that happens when evaluating ratios. The icon arrays in
Figure 7.4 communicate the two injury severity rates for Bristol and Sheffield.
Each crash is a square, and crashes are coloured according to whether they
resulted in a serious injury or fatality (dark red) or slight injury (light red).
In the bottom row, cells are given a non-random ordering to effect something
similar to a standardised bar chart. While the standardised bars enables the
two recorded proportions to be “read-off” (15% and 50% KSI), the random
arrangement of cells in the icon array perhaps builds intuition around the
differences in probabilities of a pedestrian crash resulting in serious injury.

There are compelling examples of icon arrays being used in data journalism,
most obviously to communicate outcome probabilities in political polling. You
might remember that at the time of the 2016 US Presidential election there
was much criticism levelled at pollsters, even the excellent FiveThirtyEight

152 7 Uncertainty

(Silver 2016), for not correctly calling the result. Huffpost gave Trump a 2%
chance of winning the election, The New York Times 15% and FiveThirtyEight
28%. Clearly the Huffpost estimate was really quite off, but thinking about
FiveThirtyEight’s prediction, how surprised should we be if an outcome that
is predicted to happen with a probability of almost a third, does in fact occur?

Figure 7.5: Risk theatre of different election eve forecasts, reimplemented in
geplot2 but based on data graphics appearing in Gross (2016).

The risk theatre (Figure 7.5) is a variant of an icon array. In this case it
represents polling probabilities as seats of a theatre — a dark seat represents
a Trump victory. If you imagine buying a theatre ticket and being randomly
allocated to a seat, how confident would you be about not sitting in a “Trump”
seat in the FiveThirtyEight image? The distribution of dark seats suggests
that the 28% risk of a Trump victory according to the model is not negligible.

7.2.3 Quantifying uncertainty in frequencies

In the icon arrays above we made little of the fact that the sample size varies
between the two recorded crash rates. This was because the differences were
in fact reasonably small. When looking at injury severity rates across all local
authorities in the country, however, there is substantial variation in the rates
and sample sizes. Bromsgrove has a very low injury severity rate based on a
small sample size (4%, or one out of 27 crashes resulting in KSI); Cotswold
has a very high injury severity rate based on a small sample size (75%, or 14
out of 19 crashes resulting in KST). With some prior knowledge of these areas
one might expect the difference in KSI rates to be in this direction, but would
we expect the difference to be of this order of magnitude? Just three more
KSIs recorded in Bromsgrove takes its KSI rate up to that of Bristol’s.

Although STATS19 is a population dataset to the extent that it contains data
on every crash recorded by the police, it makes sense that the more data on
which our KSI rates are based, the more certainty we have in them being

7.2 Concepts 153

reliable estimates of injury severity — ones that might be used to predict injury
severity in future years. So we can treat our observed injury severity (KSI)
rates as being derived from samples of an (unobtainable) population. Our
calculated KSI rates are parameters that try to represent, or estimate, this
population.

Although this formulation might seem unnecessary, from here we can apply
some statistical concepts to quantify uncertainty around our KSI rates. We
assume:

1. The variable of interest, KSI rate, has an unobtainable population
mean and standard deviation.

2. That our data are one sample from this unobtainable population, but
other samples could be drawn that will result in different outcomes,
estimated KSI rates, simply by chance.

3. From any sample that is drawn we can calculate a mean and standard
deviation in KSI rates.

4. And so we can derive a sampling distribution and obtain an array of
estimated KSI rates and other parameters from resampling many
times.

5. This sampling distribution could then be used to quantify how precise
are our estimates of KSI rate. Generally the larger the sampling
distribution, the more precise, the less uncertain, the estimate.

In Chapter 6 we used Confidence Intervals to estimate the uncertainty around
regression coefficients. From early stats courses you might have learnt how
Confidence Intervals can be calculated using statistical theory, but we can
derive them empirically via bootstrapping — the process enumerated above. So
a bootstrap resample involves taking a random sample with replacement from
the original data and of the same size as the original data. From this resample a
parameter estimate can be derived, in this case the KSI rate. And this process
can be repeated many times to generate an empirical sampling distribution
for the parameter. The standard error can be calculated from the standard
deviation of the sampling distribution. This non-parametric bootstrapping
approach is especially useful in exploratory analysis (Beecham and Lovelace
2023): it can be applied to many sample statistics, makes no distributional
assumptions and can work on quite complicated sampling designs.

Presented in Figure 7.6 are KSI rates with error bars used to display 95%
Confidence Intervals generated from a bootstrap procedure in which 1000
resamples were taken with replacement. Upper and lower limits were lifted
from .025 and .975 percentile positions of the bootstrap sampling distribution.
Assuming that the observed data are drawn from a wider (unobtainable)
population, the 95% Confidence Intervals demonstrate that while Cotswold
recorded a very large KSI rate, sampling variation means that this figure could
be much lower (or higher), whereas for Bristol and Sheffield, where our KSI

154 7 Uncertainty

rate is derived from more data, the range of plausible values that the KSI rate
might take due to sampling variation is much smaller — there is less uncertainty
associated with their KSI rates.

Figure 7.6: KSI rates for pedestrian-vehicle crashes in selected local authorities
with bootstrapped Cls (derived from 1000 resamples).

7.2.4 Visualizing uncertainty in frequencies

Error bars, like those in Figure 7.6, are a space-efficient way of conveying
parameter uncertainty. However, remembering our main guideline for uncer-
tainty visualization — that things that are not precise should not be encoded
with symbols that look precise — they do have problems. The hard borders can
lead to binary or categorical thinking (see Correll and Gleicher 2014). Certain
values within a Confidence Interval are more probable than others, and so
we should endeavour to use a visual encoding that reflects this. Matt Kay’s
excellent ggdist package (Kay 2024) extends ggplot2 with a range of chart
types for representing these sorts of intervals. In Figure 7.7 error bars are
replaced by half eye plots and gradient bars, which give greater visual saliency
to values of KSI that are more likely.

STATS19 road crash data are released annually. Given the wide uncer-
tainty bands for some local authorities, it might be instructive to ex-
plore the stability of KSI rates year-on-year. In Figure 7.6 these KSI rates
are represented with a bold line, and the faint lines are superimposed
bootstrap resamples. The lines demonstrate volatility in the KSI rates for
Cotswold and Bromsgrove due to small numbers. The observed increase in
KSI rates for Sheffield since 2015 does appear to be a genuine one, although
may also be affected by uncertainty around data collection and how reliably
injury severity is recorded in the dataset.

The superimposed lines in the figure above are a form of ensemble visualization.
An alternative approach might have been to animate over the bootstrap
resamples to generate a Hypothetical Outcome Plot (HOP) (Hullman, Resnick,

7.2 Concepts 155

Figure 7.7: KSI rates for pedestrian-vehicle crashes in selected local authori-
ties, with bootstrapped uncertainty estimates.

Figure 7.8: Year-on-year KSI rates for pedestrian-vehicle crashes in selected
local authorities, with bootstrap resamples superimposed.

and Adar 2015). HOPs convey a sense of uncertainty by animating over random
draws of a distribution. As there is no single outcome to anchor to, HOPs
force viewers to account for uncertainty, recognising that some less probable
outcomes may also be possible — essentially to think distributionally.

7.2.5 Multiple comparisons

In road safety monitoring, a common ambition is to compare crash rates across
local authorities. This is in order to make inferences around patterns of high
and low injury severity rate. We might represent injury severity rates as Risk
Ratios (RR) comparing the observed injury severity rate in each local authority
to a benchmark, say the injury severity rate we would expect to see nationally.
RRs are an intuitive measure of effect size: RRs >1.0 indicate that the injury
severity rate is greater than the national average; RRs <1.0 that it is less than
the national average. As they are a ratio of ratios, and therefore agnostic to

156 7 Uncertainty

Figure 7.9: Frames from hypothetical outcome plot of year-on-year KSI rates
for pedestrian-vehicle crashes.

sample size, RRs can nevertheless be unreliable. Two ratios might be compared
that have very different sample sizes, and no compensation is made for the
one that contains more data.

We can use quantitative measures to adjust for this. In the example in Fig-
ure 7.10 we use hierarchical modelling to shrink local authority KSI rates
towards the global mean (national average KSI rate) where they are based on
small numbers of observations (see Beecham and Lovelace 2023). From here
our effect sizes, called Bayesian Risk Ratios, are sensitive to uncertainty since
they are made more conservative where they are based on fewer observations.
The Bayesian Risk Ratio for each local authority is represented with a | icon:
angled to the right / where the KSI rate is greater than expected, to the left
\ where it is less than expected. Additionally, we use bootstrap resampling
to derive confidence intervals for our Bayesian RRs. If this interval does not
cross 1.0, the RR is judged statistically significant and is coloured according
to whether estimated RRs are above (/) or below (\) expectation.

From Figure 7.10 we make inferences around concentrations of high
and low injury severity rate (in the annotations). A problem with this
approach, and explicitly encoding ‘statistical significance’ values, is one familiar
to statisticians but that is rarely addressed in visual data analysis: the multiple
comparison problem. Whenever a statistical signal is identified, there is a
chance that the result observed is in fact a false alarm. In the plot above which
uses a 95% confidence level, the “false positive rate” is expected to be 5% or
1/20. When many tests are considered simultaneously, as in Figure 7.10, the
number of these false alarms begins to accumulate. There are corrections that
can be used to address this: test statistics can be adjusted and made more

7.2 Concepts 157

Figure 7.10: Bayesian Risk Ratios comparing pedestrian injury severity rates
in English local authorities coloured according to ‘statistical significance’,
whether the bootstrap confidence interval does not cross 1.0.

conservative. But these corrections have consequences. Too severe a correction
can result in statistical tests that are underpowered and result in an elevated
false negative rate, where a statistical test fails to detect an effect that truly
exists. See Brunsdon and Charlton (2011) for an interesting discussion in the
context of mapping crime rates.

So there is no single solution to multiple testing, which happens often in
visual data analysis, especially in Geography, where health and other outcomes
are mapped visually. It is actually less of problem in Figure 7.10 since our
RRs are derived from a multilevel model in which estimates are partially
pooled, or shrunk, to reflect the level of information we have (Gelman, Hill,
and Yajima 2012). Presenting the RRs in their spatial context, and providing
full information around RRs that are not significant (the oriented lines), also
supports informal calibration. For example, depending on the phenomena,
we may wish to attach more certainty to RRs that are labelled statistically
significant and whose direction is consistent with their neighbours than those
that are exceptional from their neighbours. Additionally, constructing a
graphical line-up test (Wickham et al. 2010) allows us to explore whether the
sorts of spatial patterns in RR values in the observed data are genuine or
might appear in random decoy maps. Although informal, this sort of visual test
approximates to the type of question that transport analysts may ask when
identifying priority areas for road safety intervention (Beecham and Lovelace
2023).

158 7 Uncertainty

Task

Watch Matt Kay’s excellent talk to BostonCHI, Uncertainty Visualization
as a Moral Imperative:
e https://www.youtube.com/watch?v=mfQ3QVyw4NO

And Robert Kosara’s talk, Presentation and Audience, as part of his
Advanced Visualization course for Observable, from 43:43 minutes in:
e https://www.youtube.com/watch?v=Wb6xKQRtWig

7.3 Techniques

The technical element demonstrates how some of the uncertainty estimate
examples in the chapter can be reproduced. We will again make use of functional
programming approaches via the purrr package, mostly for generating and
working over bootstrap resamples.

7.3.1 Import

o Download the e7-template.qmd! file for this chapter, it to your visasds project.
e Open your visasds project in RStudio, and load the template file by clicking
File > Open File ... > 07-template.qgmd.

The template file lists the required packages: tidyverse, sf, tidymodels (for
working with the bootstraps), gedist and distributional for generating plots of
parameter uncertainty and gganimate for the hypothetical outcome plot. Code
for loading the STATS19 pedestrian crash data is in the e7-template.qmd file.

7.3.2 Plot icon arrays

Icon arrays can be generated reasonably easily in standard ggplot2 using
geom_tile() and some data generation functions. The most straightforward
approach is to place icon arrays in a regularly-sized grid. In the example, KSI
rates in Fareham (41%) and Oxford (17%) are compared.

First we generate the array data: a data frame of array locations (candidate
crashes) with values representing whether the crash is slight or KSI depending
on the observed KSI rate. In the code below, we set up a 10x10 grid of row
and column locations and populate these with values for the selected local
authorities (Oxford and Fareham) using base R’s sample() function.

1 https://vis4sds.github.io/vis4sds/files/07-template.qmd

https://www.youtube.com/watch?v=mfQ3QVyw4N0
https://www.youtube.com/watch?v=Wb6xKQRtWig
https://vis4sds.github.io/vis4sds/files/07-template.qmd

7.8 Techniques 159

Figure 7.11: Icon arrays of pedestrian-vehicle crashes.

array_data <- tibble(

row=rep(1:10, times=1, each=10),

col=rep(l:10, times=10, each=1),

Oxford=
sample(
c(rep(TRUE, times=1, each=17), rep(FALSE, times=1, each=83)),
size=100, replace=FALSE),

Fareham=
sample(
c(rep(TRUE, times=1, each=41), rep(FALSE, times=1, each=59)),
size=100, replace=FALSE)

The plot code is straightforward:

array_data |>

pivot_longer(

cols=c(0xford,Fareham), names_to="1a", values_to="1is_ksi"

) 1>
ggplot(aes(x=row,y=col, fill=is_ksi)) +
geom_tile(colour="#ffffff", linewidth=1) +
scale_fill_manual(values=c("#fee0d2","#de2d26"), guide="none") +
facet_wrap(~1la)

Plot specification:

1. Data: The array data, with pivot_tlonger() so that we can facet by
local authority.

2. FEncoding: x- and y-position according to the array locations and
filled on whether the sampled crash is KSI or slight.

3. Marks: geom_tile() for drawing square icons.

160 7 Uncertainty

4. Scale: scale_fill_manual() is supplied with values that are dark (KSI)
and light (slight) red.

5. Facets: facet_wrap() for faceting on local authority.

6. Setting: Tiles are given large, white borders
(geom_tile(colour="#ffffff", size=1)).

Figure 7.12: Risk theatre for pedestrian-vehicle crashes.

To present the icon array as a risk theatre, we have created a shapefile
containing 1,000 theatre seat positions. To randomly allocate KSIs to seats on
the proportion in which those crashes occur, we use the stice_sample() function.

theatre_cells <- st_read(here("data", "theatre_cells.geojson"))

ksi_seats <- bind_rows(
theatre_cells |> slice_sample(n=170) |>
add_column(la="0xford\n170 KSI in 1,000 crashes"),
theatre_cells |> slice_sample(n=410) |>

add_column(la="Fareham\n410 KSI in 1,000 crashes")

The code:

theatre_cells |>
ggplot() +
geom_sf() +
geom_sf(
data=ksi_seats,
fill="#000000"

7.8 Techniques 161

) +

annotate("text", x=23, y=1, label="Stage", alpha=.5) +
annotate("text", x=23, y=21, label="Orchestra", alpha=.5) +
annotate("text", x=23, y=31, label="Front mezzanine", alpha=.5) +
annotate("text", x=23, y=42, label="Rear mezzanine", alpha=.5) +

facet_wrap(~la)

Plot specification:

1. Data: theatre_cells contains geometry data for all 1,000 seats;
ksi_seats contains the randomly sampled seat locations.

2. Marks: geom_tile() for drawing seat icons.

Facets: facet_wrap() for faceting on local authority.

4. Setting: KSI tiles are coloured black (fill="#eee000"). Also annotate()
blocks of the theatre, x- and y- placement is determined via trial-
and-error.

@

7.3.3 Generate bootstrap estimates of parameter
uncertainty

The code for generating bootstrap resamples, stored in rate_boots, initially
looks formidable. It is a template that is nevertheless quite generalisable, and
so once learnt can be extended and applied to suit different use cases.

rate_boots <- ped_veh |>
mutate(
is_ksi=accident_severity!="Slight",
year=Tlubridate: :year (date)
) 1>
filter(year==2019,
local_authority_district %in% c("Bristol, City of",
"Sheffield", "Bromsgrove", "Cotswold")
) 1>
select(local_authority_district, is_ksi) |>
nest(data=-local_authority_district) |>
mutate(la_boot=map(data, bootstraps, times=1000, apparent=TRUE)) |>
select(-data) |>
unnest(la_boot) |>
mutate(
is_ksi=map(splits, ~analysis(.) |> pull(is_ksi)),
ksi_rate=map_dbl(is_ksi, ~mean(.x)),

sample_size=map_dbl(is_ksi, ~length(.x))

162 7 Uncertainty

) 1>
select(-c(splits, is_ksi))

Code description:

1. Setup: The first mutate() is straightforward — a binary is_ksi variable
identifies whether a crash is KSI, and the crash year is extracted from
the date variable. Crashes recorded in 2019 are then filtered, along
with the four comparator local authorities. To generate bootstrap
resamples for each local authority, we nest() on local authority.
You will remember that nest() creates a special type of column (a
list-column) in which the values of the column is a list of data frames
— in this case the crash data for each local authority. So running the
code up to and including the nest(), a data frame is returned which
contains four rows corresponding to the filtered local authorities and
a list-column called data, each element of which is a data frame of
varying dimensions (lengths) depending on the number of crashes
recorded in each local authority.

2. Generate bootstraps resamples: In the mutate() that follows, purrr’s
map() function is used to iterate over the list of datasets and the
bootstraps() function to generate 1,000 bootstrap resamples for each
nested dataset. The new column, la_boot, is a list-column this time
containing a list of bootstrap datasets.

3. Calculate sample estimates: We unnest() the 1a_boot column to return
a dataset with a row for each bootstrap resample and a list-column
named splits which contains the bootstrap data. Again we map()
over each element of splits to calculate the ksi_rate for each of the
bootstrap datasets. The first call to map() extracts the is_ksi variable;
the second is just a convenient way of calculating a rate from this
(remembering that is_ksi is a binary variable); the third collects the
sample size for each of the bootstraps, which of course is the number
of crashes recorded for each local authority.

7.3.4 Plot parameter estimates with uncertainty
information

With ggdist, the code for generating KSI rates with estimates of parameter
uncertainty is straightforward and very similar to the error bar plots in the
previous chapter.

7.8 Techniques 163

Plot code:

rate_boots |>

group_by(local_authority_district) |>

mutate(std.error=sd(ksi_rate)) |>

filter (id=="Apparent") |>

ggplot(
aes(x=reorder(local_authority_district, ksi_rate), y=ksi_rate)
) +

stat_gradientinterval(
aes(dist = dist_normal(mu=ksi_rate, sigma=std.error)),
point_size = 1.5

) +

coord_flip()

Plot specification:

1. Data: The rate_boots data frame is grouped by local authority and in
the mutate() we calculate an estimate of bootstrap standard error, the
standard deviation of the sampling distribution, and filter all rows
where id=="Apparent" — this contains the KSI rate for the observed
(unsampled) data.

2. FEncoding: x- position varies according to local authority and y-
position according to KSI rate. The estimated KSI rate and bootstrap
standard error are also passed to stat_gradientinterval(), the ggdist
function for producing gradient plots.

3. Marks: stat_gradientinterval() for drawing the gradients and point
estimates.

4. Setting: coord_flip() for easy reading of local authority names.

7.3.5 Ensemble plots and hypothetical outcome plots

To generate bootstrap resamples on local authority and year, necessary for the
year-on-year analysis, we can use the same template as that for calculating
rate_boots; the only difference is that we select() and nest() on the year as well
as the local_authority_district column.

rate_boots_temporal <- ped_veh |>

o [
select(local_authority_district, is_ksi, year) |>

nest(-c(local_authority_district, year)) |>

164

7 Uncertainty

The ensemble plot is again reasonably straightforward:

rate_boots_temporal |>

ggplot(aes(x=year, y=ksi_rate)) +

geom_line(data=. %>% filter(id=="Apparent"),

aes(group=id), linewidth=.5) +

geom_line(

data=. %>% filter(id!="Apparent"),

aes(group=id), alpha=.1, size=.2

) +

facet_wrap(~local_authority_district)

Plot specification:

P~ w

Finally, the Hypothetical Outcome Plot (HOP) can be created easily using the
gganimate package, simply by adding a call to transition_states() at the end of

Data: The rate_boots_temporal data frame. Note that we in-
clude two line layers, one with the observed data (data=. %%
filter (id=="Apparent") and one with the bootstrap data (data=. %>%
filter(id!:"Apparent”)

Encoding: x- position varies according to year, y-position according
to KSI rate.

Marks: geom_line() for drawing lines.

Facets: facet_wrap() for faceting on local authority.

Setting: The bootstrap lines are de-emphasised by making the alpha
and size channels very small.

the plot specification:

rate_boots_temporal |>
filter(id!="Apparent") |>

ggplot(aes(x=year, y=ksi_rate)) +

geom_line(aes(group=id), linewidth=.6) +

facet_wrap(~local_authority_district)+

transition_states(id, 0,1)

7.4 Conclusions 165

7.4 Conclusions

Uncertainty is fundamental to any data analysis. Statisticians and data scien-
tists almost always end up reasoning about uncertainty, developing quantitative
estimates of uncertainty and communicating uncertainty so that it can be
taken into account when making evidence-based claims and decisions. Through
an analysis of injury severity in the STATS19 road crash dataset, this chapter
introduced techniques for quantifying and visually representing parameter
uncertainty. There has been much activity in the Information Visualization
and Data Journalism communities focussed on uncertainty communication —
on developing approaches that promote intuition and allow users to experience
uncertainty. We have covered some of these and demonstrated how they could
be incorporated into our road crash analysis case study.

7.5 Further Reading
An excellent primer on uncertainty visualization:

o Padilla, L., Kay, M. and Hullman, J. 2021. “Uncertainty Visualization,” in Wi-
ley StatsRef: Statistics Reference Online, edited by B. Everitt N. Balakrishnan
T. Colton and J. L. Teugels, Wiley. doi: 10.1002/9781118445112.stat08296.

On visualizing parameter uncertainty:

e Correll, M. and Gleicher, M. 2014. “Error Bars Considered Harmful:
Exploring Alternate Encodings for Mean and Error,” IEEE Transac-
tions on Visualization and Computer Graphics 20(12): 2142-2151. doi:
10.1109/TVCG.2014.2346298.

o Kale, A., Nguyen, F., Kay, M. and Hullman, J. 2019. “Hypothetical Outcome
Plots Help Untrained Observers Judge Trends in Ambiguous Data,” IEEE
Transactions on Visualization and Computer Graphics, 25(1): 892-902. doi:
10.1109/TVCG.2018.2864909.

On bootstrap resampling with R and tidyverse:

e Ismay, C. and Kim, A. 2020. “Statistical Inference via Data Science: A
ModernDive into R and the Tidyverse”, New York, NY: CRC Press. doi:
10.1201/9780367409913.

— Chapters 7, 8.

https://doi.org/10.1002/9781118445112.stat08296
https://doi.org/10.1109/TVCG.2014.2346298
https://doi.org/10.1109/TVCG.2018.2864909
https://doi.org/10.1201/9780367409913

https://www.taylorandfrancis.com

8

Visual Storytelling

By the end of this chapter you should gain the following knowledge and
practical skills.

i Knowledge

0 Appreciate the main characteristics of data-driven stories.
O Identify how visual and rhetorical devices are used to communicate
with data.

1 Practical skills

O Use shape primitives to code up custom chart designs in ggplot2.
0 Add non-standard annotations to ggplot2 graphics.

8.1 Introduction

It is now taken for granted that we live in an evidence-based society in which
data are deeply embedded in most domains. This recognition has coincided
with the open source movement, which has freed up access and accelerated
the development of tools for working with data. The response to Covid-19
is an excellent example. Enter Covid19 github into a search, and you’ll be
confronted with hundreds of code repositories demonstrating how data related
to the pandemic can be collected, processed and analysed. This is exciting and
feels very democratic. But there is a responsibility amongst those constructing
and sharing evidence-based arguments to do so with integrity; navigating the
difficult tension between communicating a clear message — necessarily reducing
some of the complexity — at the same time as acknowledging uncertainty.

The role of narrative and storytelling when working with data is much dis-
cussed in Information Visualization (see Henry Riche et al. 2018) and Science
Communication (see Franconeri et al. 2021). Importantly, this work recognises
that there is no single, optimal visualization design that exposes the true

167

168 8 Visual Storytelling

structure or story in a dataset. Instead, careful design decisions must be made
in light of data, audience and intended purpose. In this chapter we will review
some of this literature with a special focus on approaches to communicating
data around the Covid-19 pandemic, specifically publicly reported numbers of
cases, hospitalisations and deaths.

8.2 Concepts
8.2.1 Data-driven storytelling

In earlier chapters of the book (e.g. Chapter 3) we identified and explored some
common characteristics of effective data graphics. Roth (2021) enumerates 10
such characteristics specialised to data storytelling. Particularly important for
visualization design is that data graphics are:

o Designed: The analyst makes very deliberate decisions in light of audience
and purpose. The goal of visual storytelling is not just to show but also to
explain.

o Partial: Essential information is prioritised and made salient, with abstraction
and brevity preferred over complexity and completeness.

o Intuitive: Visual narratives take advantage of our natural tendency to commu-
nicate via metaphor and story, with a clear entry point and clear progression.

o Compelling: Visual stories often capture attention through an array of graphi-
cal devices — sequence, animation and interaction. They generate an aesthetic
response.

o Relatable and situated: Visual stories promote empathy, using devices that
place the audience in the story setting. They are usually constructed from
somewhere — according to a particular position.

e Political: Visual data stories promote with clarity particular voices, interpre-
tations or positions.

In the sections that follow, we review some prominent Covid-19 visualizations
and reflect on how they implement these sorts of storytelling devices.

8.2.2 Designed and partial

Perhaps the most high-profile example of data graphics specialised to com-
munication were those produced by the Financial Times (Financial Times
2020). Figure 8.1 displays one such example, the Financial Times’ Covid-19
trajectory tracker. Along the y-axis are cumulative numbers of deaths repre-
sented using a log-scale; and along the x-axis, the number of days that elapsed
since some threshold number of deaths was recorded.

8.2 Concepts 169

Figure 8.1: John Burn-Murdoch’s international comparison of deaths, as
explained in Financial Times (2020). This is an approximate ggplot2 re-
implementation of the original Financial Times graphic.

We can evaluate the graphic using some of the principles introduced in Chap-
ter 3. In its use of position on an aligned scale to encode death counts, colour
hue to differentiate countries and lines to connect daily counts, the graphic’s
visual encoding exploits our cognitive abilities. The graphic also makes appro-
priate use of superposition to support comparison (Gleicher et al. 2011) — lines
for each country represented on the same coordinate space.

More interesting is how the graphic performs on Roth’s (Roth 2021) character-
istics of visual storytelling. It is clear that the graphic is designed with a very
deliberate purpose:

1. Between country comparison: Are countries on the same course?
2. Comparison against milestone: How many days does it take a certain
county to reach a given number of deaths?

It is possible to see each of these goals informing the graphic. Comparison
between countries is most obviously supported by the use of a log-scale. This
data transformation removes the dominant, hockey-stick type pattern inevitable
when analysing disease growth (e.g. exponential doubling) and instead allows
slopes, growth rates, to be compared directly. In narrowing on growth rates at

170 8 Visual Storytelling

the expense of absolute numbers, the graphic is partial. Even for readers of the
Financial Times, though, log scales may not be so familiar. Annotations are
therefore provided to anchor the reader on reference slope gradients (growth
rates), again narrowing and supporting intuition on the essential goal of
between country comparison. Notice also that there are no legends in this
chart. Countries are differentiated with colour hue and then directly-labelled
at their most recent death count, an addition that offloads an otherwise taxing
look-up task, but also serves to emphasise a country’s ‘stage’ in the pandemic.

(3 .
1 Log scales for rate comparison

A design alternative that supports between country comparison is Bhatia
and Reich’s (Bhatia and Reich 2020) Covid Trends chart (Figure 8.2). In
this example, a double log scale is used, and growth rates in new cases
are presented on the y-axis with total case numbers, rather than time
elapsed, plotted along the x-axis. While the introduction of a double log
scale might be judged to increase difficulty, actually this design narrows
or simplifies the reader’s visual judgement further on the thing that
we are most interested in: comparison of country growth rates against
the two day doubling (annotated with the diagonal). The chart is also
accompanied with an excellent explanatory video, in which many of the
characteristics of visual data stories enumerated by Roth (2021) can be
identified.

Figure 8.2: Covid Trends chart (Bhatia and Reich 2020). This is an
approximate ggplot2 re-implementation of a static from the original
webpage.

8.2 Concepts 171

8.2.3 Intuitive and compelling

Visual data stories are often explanatory (Roth 2021). They make compelling
use of graphical and rhetorical devices to support understanding. This is
especially important in data-driven storytelling, as often quite challenging
concepts are covered in a limited amount of space. In Figure 8.3 is a static image
from a data story written by Flourish (Lawlor and Robertson 2021) based on
design work by Marteen Lambrechts. The data story is essentially a design
exposition (Beecham, Dykes, Rooney, et al. 2021; Wood, Kachkaev, and Dykes
2018), guiding readers from the familiar to the unfamiliar. First a standard
time series chart of hospitalisations and deaths is presented. Deficiencies in
this layout are explained before progressively introducing the transformations
involved to generate the preferred graphic, a connected scatterplot (Haroz,
Kosara, and Franconeri 2016). Ordering the story in this way means that
design decisions and trade-offs are covered from a familiar starting point, and
from here new, sometimes unfamiliar encodings. Thinking about Roth’s(2021)
characteristics of visual storytelling, this approach to formulating a design
story helps build intuition; there is a clear entry point and clear progression.

Figure 8.3: Screenshot from a data story written by Lawlor and Robertson
(2021), demonstrating how connected scatterplots can be used to analyse
changes in hospitalisations and deaths. The screenshot is reprinted, with
permission, from Flourish.

172 8 Visual Storytelling

o . oy
1 Design exposition

For an example of guided design exposition, see Beecham, Dykes, Hama,
et al. (2021) which develops ways of showing simultaneously absolute
and relative change in Covid-19 cases, with geographic context.

Figure 8.4: Weekly admissions to intensive care units in England. Each
year is introduced progressively, with animated rescaling of the y-axis used
to demonstrate how different in terms of intensive care admissions 2020/21
is to previous flu seasons. These are frames from an approximate ggplot2
re-implementation of the original Financial Times graphic (Financial Times
2021).

Animations in data graphics can increase engagement and aesthetic appeal.
They can also overwhelm since they involve complex tracking of information
between frames. An example of how animation can be used selectively to
build intuition is demonstrated in Figure 8.4, again from the Financial Times
(Financial Times 2021). The main objective is to demonstrate how different
2020-21 is in terms of admissions to intensive care compared to a normal year.
This was in response to claims that Covid-19 behaves much like seasonal flu; to
this extent the graphic is also quite political. Each year from 2013-14 is added
to the chart and the y-axis rescaled to reflect the new numbers. The animated

8.2 Concepts 173

transitions of the y-axis help build expectation around normal variability in a
similar way to the hypothetical outcome plots (Hullman, Resnick, and Adar
2015) covered in the previous chapter. The claim that the 2020-21 flu season
is consistent with normal variability is then debunked by introducing the
2020-21 line in red, with animated rescaling of the y-axis used to further
emphasise this point.

Figure 8.5: Data graphic by Burn-Murdoch (2021), presenting an argument
for the role of vaccines in reducing Covid cases, hospital admissions and deaths.
An approximate ggplot2 re-implementation of the original Financial Times
graphic. Note that a slightly different smoothing function may have been used
in the original graphic, especially for the cases data.

8.2.4 Political

Figure 8.5 presents a final example from the Financial Times (Burn-Murdoch
2021) with a clear political purpose. The graphic was created in response to some
claims that it is movement restrictions (lockdowns) rather than vaccination
that reduced infection rates in the country.

Interesting here is how annotation and visual saliency are used to direct our
reading. If it was only annotated with points in time when lockdown and
vaccination were initiated, the graphic might invite judgements about the
effects of these two events on infectious rates. That it makes highly salient via
annotation the (unmeasurable) effect of the vaccine is an interesting addition;
there is little room for ambiguity.

This sort of presentation, labelling the chart with an unmeasurable vaccine
effect, may risk graphical integrity. In a keynote given at IEEE VIS 2020,
John Burn-Murdoch (2020), who created this and the other Financial Times
graphics, reflected on his experiences generating data stories early in the
pandemic. One observation was that the way in which the Financial Times’s

174 8 Visual Storytelling

analyses were interpreted, and misinterpreted, varied depending on the prior
expectations and political beliefs of those consuming them. The chart labelling
in this case might have been added to signal more directly the evidence-based
argument that was being made — to amplify a particular conclusion supported
by the data.

Clearly all data analysis is heavily informed by the values, prejudices, motiva-
tions and incentives of those undertaking them. As demonstrated by Roth’s
(2021) characteristics of data storytelling, these individual factors are neces-
sary to communicate effectively. An interesting question, then, is around how
integrity and trust are designed into a data analysis. Perhaps in the case of the
Financial Times data journalists, this trust is established over time, through a
portfolio of data analysis work that is considered; communicated transparently
and with humility.

1 Subjectivity in design: revisiting travel-to-work under lockdown

When adhering strictly to graphical perception literature, there is a
risk of assuming that an optimal design solution exists for any analysis
situation — and that this optimal design can be achieved through correct
mapping of data to visual encoding channels. The subtext to this chapter
is that in reality we need to think about design in quite a subjective and
context specific way.

Figure 8.6 uses the origin-destination travel-to-work data described
in Chapter 4, updated with 2021 Census data, recorded at a time
when a national Covid-19 lockdown and stay-at-home order was
instituted. While the graphic is conventional in its visual encoding, it
is constructed with a clear ambition: to highlight inequalities in the
ability of workers to obey the stay-at-home order. This message could
have been communicated easily with a single graphic, or even a single
statistic, reporting proportional change between the two census years.
However, to emphasise that professional high-status workers are better
able to observe the ‘stay-at-home’ order than those in lower-status
elementary occupations, the graphic is repeated many times for each
London borough, with essentially the same trend. Figure 8.6 is therefore
inefficient if judged against the detail it exposes. The repetition by
London boroughs nevertheless has value in helping to reinforce a
differences in experience, depending on occupation status, that appears
to be universal across London. There is also a little creative license in
the title: the data do not directly describe stay-at-home, since it is of
course possible that workers commute to work inside the borough in
which they live.

8.8 Techniques 175

For the interested reader, the code <can be found at:
https://github.com/rogerbeecham/census21.

Figure 8.6: Gridmap showing proportions of those living and working
in the same London borough in 2011 and 2021 Censuses.

Task

Watch John Burn-Murdoch’s talk, Making charts that make an impact.
John also presents a slightly different but persuasive take in this talk on
uncertainty visualization:

e https://www.youtube.com/watch?v=tIbaQUo6H9g

And Robert Kosara’s talk, Presentation and Audience, as part of his
Advanced Visualization course for Observable, from 13:30 minutes in:
e https://www.youtube.com/watch?v=Wb6xKQRtWig

8.3 Techniques

The technical element demonstrates how to design plots delibera-
tively with annotations in ggplot2. We will recreate a glyphmap type
graphic that originally appeared in The Washington Post (Thebault and
Hauslohner 2020) to tell a story of growth in Covid-19 cases by US county.
The graphic is presented in Figure 8.7. Each US county is represented as a line
showing daily growth rates in new cases between 3rd May and 26th May 2020.
Lines are positioned at the geographic centre of each county.

https://github.com/rogerbeecham/census21
https://github.com/rogerbeecham/census21
https://www.youtube.com/watch?v=tIbaQUo6H9g
https://www.youtube.com/watch?v=Wb6xKQRtWig

176 8 Visual Storytelling

Figure 8.7: Glyphmap design displaying growth in COVID-19 cases by US
county, based on the design by Thebault and Hauslohner (2020), originally in
The Washington Post.

Figure 8.7 is certainly data dense. Without careful decisions on which aspects
to emphasise it would be quite unreadable. Line thickness is varied according to
relative infection rates (cumulative cases/population size), and growth rate is
double encoded with colour value — darker and steeper lines for higher growth
rates. Even with these additions it is challenging to discern trajectories for every
county, but instead a typical model or expectation of these trajectories can be
learnt from visually scanning the graphic. That there is spatial autocorrelation
in trajectories means an overall pattern of exposure can be inferred, before
eyes are drawn to exceptions. Initially these are towards the extreme end: tall,
steep, dark and thick lines suggesting rapid growth rates and high case rates.
Secondary patterns can also be observed, for example thick and mid-dark lines
surrounded by lines that are generally lighter and thinner: counties that appear
locally exceptional in having comparatively high growth and exposure rates.

The design is impressive, and there is an obvious benefit to showing growth
rates in their spatial position. However, we are not looking at absolute numbers.
The counties that are most salient are not those with the largest case counts.
Rather, they have experienced rapid growth since the number of cases reported
on 3rd May. So the graphic is most certainly partial and designed to suit a
particular purpose. A slight adjustment in the implementation in Figure 8.7

8.8 Techniques 177

was to only show growth rates for counties that had non-negligible case counts
on 3rd May (> 20 cases).

Without the careful integration of annotations and non-standard legends,
Figure 8.7 would not be so successful. The aim of this technical section is to
demonstrate an approach to generating heavily designed annotations — custom
legends, which are often necessary when communicating with maps. For more
extensive demonstration of how charts can be annotated and refined, do see
the Further Reading section (Section 8.5) of this chapter.

8.3.1 Import

o Download the os-template.qmd’ file, and save it to your vis4sds project.
e Open your visasds project in RStudio, and load the template file by clicking
File > Open File ... > 08-template.qgmd.

The template file lists the required packages — tidyverse and sf. The data were
collected using the covdata package (Healy 2020), attributing the county-level
cumulative cases dataset maintained by data journalists at The New York
Times (2021).

The template provides access to a version of this dataset that is ‘staged’ for
charting. For this, cases are filtered on the dates covered by the Washington
Post graphic (3rd to 25th May). Counties whose daily case counts were > 20
on 3rd May are identified; calculated daily growth rates are anchored to
case counts on 3rd May; ‘end’ growth rates and daily counts for each county
are calculated (those recorded on 25th May); and finally a binned growth
rate variable, identifying counties with daily case counts on 25th May that
were < 2X, > 2%, > 4x, > 7x those measured on 3rd May. Also there is a
state_boundaries dataset to download, which contains geometry data for each US
state, collected from US Census Bureau.

8.3.2 Plot trajectories

The main graphic is reasonably straightforward to construct. Different from
many of the data graphics in earlier chapters, the way in which growth lines are
coded is somewhat low-level. Remembering that lines are initially positioned
in x- and y- on their county centroid, we generate from the data positions in
geographic space for each observation — daily growth rates since 3rd May 2020.

The code:

county_data |>

ggplot() +
geom_sf(

1 https://vis4sds.github.io/vis4sds/files/08-template.qmd

https://vis4sds.github.io/vis4sds/files/08-template.qmd

178 8 Visual Storytelling

Figure 8.8: Glyphmap design displaying growth in COVID-19 cases by US
county, without legend and annotations.

data=state_boundaries,
fill="#eeeeee", colour="#ffffff", linewidth=0.4
)+
coord_sf(crs=5070, datum=NA, clip="off") +
geom_point(
data=.%>% filter (date=="2020-05-03"),
aes(
X=X, Y=y, size=case_rate, alpha=binned_growth_rate,
colour=binned_growth_rate
)
) +
Plot case data.
geom_path(
aes|(
x=x+((day_num-1)*6000), y=y+((growth_rate-1)*50000),
group=fips, linewidth=case_rate, alpha=binned_growth_rate,
colour=binned_growth_rate),
lineend="round"
) +
scale_colour_manual(
values=c("#fa9fb5", "#dd3497", "#7a0177", "#49006a")

8.8 Techniques 179

) +
scale_size(range=c(.1,1.5)) +
scale_linewidth(range=c(.3,3)) +
scale_alpha_ordinal(range=c(.2,1)) +
guides(colour="none", size="none", alpha="none") +

theme_void()

The plot specification:

1. Data: The main dataset — the staged county_data file. Separately
there is a state_boundaries file used to draw state boundaries and
later label states. For the points drawn at the centroid of each US
county (geom_point()), the data are filtered so that only a single day
is represented (filter(date=="2020-05-03")).

2. Encoding: For geom_point(), x-position and y-position are mapped to
county centroids (x,y variables in county_data), points are coloured
according to binned_growth_rate using both colour and alpha and sized
according to that county’s case_rate. The same colour and size
encoding is used for the lines (geom_path()). County lines are again
anchored at county centroids but offset in x according to time elapsed
(day_num) and in y according to growth_rate. The constants applied
to growth_rate (5000) and day_num (6000), which control the space
occupied by the lines, was arrived at manually through trial and
error. Note that these numbers are large, as they relate to geographic
coordinate space. In order to draw separate lines for each county,
we set the group= argument to the county identifier variable fips.

3. Marks: geom_point() for the start points centred on county centroids
and geom_path() for the lines.

4. Scale: scale_colour_manual() for the binned growth rate colours;
scale_alpha() for an ordinal transparency range. The floor for this is
0.2 and not 0, otherwise counties with the smallest binned growth
rates would not be visible. scale_size() and scale_linewidth_size()
for varying the size of points and thickness of lines continuously
according to case rate, the range was arrived at through trial and
error.

5. Setting: We don’t want the default legend to appear, and so guides()
turns these off. Additionally theme_void() removes the default axes,
gridlines etc.

8.3.3 Add labels and annotations

The two-letter state boundaries held in the state_boundaries file can be added
in a geom_text() layer, positioned in x and y at state centroids. For obvious
reasons this needs to appear after the first call to geom_sf(), which draws the
filled state outlines:

180 8 Visual Storytelling

county_data |>
ggplot()+
ggplot() +
geom_sf(
data=state_boundaries,
fill="#eeeeee", colour="#ffffff", linewidth=0.4
)+
geom_text(data=state_boundaries, aes(x=x,y=y,label=STUSPS), alpha=.8)+

For the counties annotated with accompanying growth rates, we create a staged,
filtered data frame containing only those counties and with just one row for
each county. This is a little more tedious as we have to manually identify these
in a filter(). Note that we filter on date first, so that only one row is returned
for each county. Within the mutate() some manual abbreviations are made for
state names and also the end_rate variable is rounded to whole numbers for
better labelling.

Counties to annotate.
annotate <- county_data |>
filter(
date=="2020-05-03",
county==c("Huntingdon") & state=="Pennsylvania"
county==c("Lenawee") & state=="Michigan" |
county==c("Crawford") & state=="Iowa" |
county==c("Wapello") & state=="Iowa" |
county==c("Lake") & state=="Tennessee" |
county=="Texas" & state == c("Oklahoma") |
county==c("Duplin") & state=="North Carolina" |
county==c("Santa Cruz") & state=="Arizona"|
county==c("Titus") & state=="Texas"|
county==c("Yakima") & state=="Washington"
) 1>
mutate(
state_abbr=case_when(
state=="Pennsylvania" ~ "Penn.",

state=="Iowa" ~ "Iowa",

state=="Tennessee" ~ "Tenn.",
state=="0Oklahoma" ~ "Okla.",
state=="Texas" ~ "Texas",
state=="North Carolina" ~ "N.C.",

state=="Washington" ~ "Wash.",

8.8 Techniques 181

state=="Michigan" ~ "Mich.",
state=="Arizona" ~ "Arizona",
TRUE ~ ""),

end_rate_round = round(end_rate,0)

Plotting these is again quite straightforward with geom_text(). The pasteo()
function is used to build labels that display county names (county) and then
state abbreviations (state_abbr). These appear below each county by offseting
y-position. Additionally the counties are given a bold font by passing an
argument to fontface="bold". The same approach is used for the rate labels, but
with an incremented y-position offset so that they don’t overlap the county
name labels.

county_data |>
ggplot()+
geom_sf(data=state_boundaries,

fill="#eeeeee", colour="#ffffff", linewidth=0.4)+

geom_text(
data=annotate,
aes(x=x,y=y-20000, label=paste@(county,", ",state_abbr)),
size=3, fontface="bold"
)+
geom_text(
data=annotate,
aes(x=x,y=y-65000, label=paste0d(end_rate_round,"X more cases")),
size=2.5

)+

8.3.4 Build custom legend

Since Figure 8.7 is a custom data graphic coded in a low-level way with
geom_segment (), it is useful to accompany it with a more expressive legend. We
therefore build our own legend from scratch, using the geographic space of the
plot as our canvas.

To support positioning of the legend we extract the spatial limits, or bounding
box, of our plot area — the mainland US.

182 8 Visual Storytelling

Figure 8.9: Growth rates legend. Figure 8.10: Case rates legend.

Bounding box for mainland US.
bbox <- st_bbox(state_boundaries)
width <- bbox$xmax-bbox$xmin

height <- bboxSymax-bboxSymin

We then create a dataset for the top right legend displaying the different
categories of growth rate — Figure 8.9. Counties filtered by their different
growth rates were identified manually. As you will see shortly, we use exactly
the same encoding as the main graphic for the example legend lines, but rather
than positioning these selected counties in their real geographic position, we
override their x- and y- location so that the lines appear in a margin to the top
right of the graphic. This is achieved in the mutate(), where we set x-position
to start at the right quarter of the graphic (bbox$xmax-.25*width) and y-position
to start slightly above the top of the graphic (bbox$ymax+.e5%height). case_rate
is set to a constant as we don’t want line width to vary.

Legend : growth
legend_growth <- county_data |>
filter(
county=="Dubois" & state=="Indiana" |
county=="Androscoggin" & state=="Maine" |
county=="Fairfax" & state=="Virginia" |
county=="Bledsoe" & state=="Tennessee"
ME
mutate(
x=bbox$xmax-.25*width, y=bbox$ymax+.05xheight,
case_rate=.01,

label=case_when(

county == "Dubois" ~ "7x more cases than on May 3",
county == "Androscoggin" ~ "4x",
county == "Fairfax" ~ "2x",

county == "Bledsoe" ~ "About the same as on May 3"

8.8 Techniques 183

A separate dataset is also created for drawing the top left legend — Figure 8.10,
showing different case rates relative to population size. In the mutate() we set
x-position to start towards the left of the graphic (bbox$xmax-.88+width) and
y-position to start slightly above the top of the graphic bbox$ymax+.e5xheight.
We want to draw three lines corresponding to a low, medium and high growth
rate and so pivot_longer () to duplicate the daily case data over rows. Each line
is positioned with the offset_day variable, a multiple applied to the geographic
width of US used later in the ggplot2 specification.

Legend : case
legend_case <- county_data |>
filter(county == "Kings" & state=="California") |[>
mutate(
x=bbox$xmax-.88*width,y=bbox$ymax+.05*xheight,
binned_growth_rate=factor(binned_growth_rate)
) %>%
select(x, y, day_num, growth_rate, binned_growth_rate, fips) |>
mutate(low=.001, mid=.009, high=.015) |>
pivot_longer(
cols=c(low, mid, high), names_to="offset", values_to="offset_rate"
) 1>
mutate(

offset_day= case_when(

offset == "low" ~ 0,
offset == "mid" ~ .04,
offset == "high" ~ .08

8.3.5 Compose graphic

The code block below demonstrates how derived data for the legends are used
in the ggplot2 specification. Exactly the same mappings are used in the legend
as the main graphic, and so the call to geom_path() looks similar, except for the
different use of x- and y- position. Labels for the legends are generated using
annotate() and again positioned using location information contained in bbox.

Text for annotations and titles.

growth_text <- "Line height and colour show change in reported cases
relative to May 3"

case_text <- "Line thickness shows current number relative to

county population"

title_text <- "Change in reported cases since May 3"

184 8 Visual Storytelling

county_data |>
ggplot()+
geom_sf(data=state_boundaries,

fill="#eeeeee", colour="#bcbcbc", linewidth=0.4)+

Plot growth legend lines.
geom_path(
data=legend_growth,
aes(x=x+((day_num-1)*6000), y=y+((growth_rate-1)*50000),
group=fips, linewidth=case_rate, alpha=binned_growth_rate,
colour=binned_growth_rate),lineend="round") +
Text label for growth legend lines.
geom_text(
For positioning manually edit growth_rate of Bledsoe.
data=legend_growth %>%
filter(day_num == max(county_data$day_num)) %>%
mutate(growth_rate=if_else(county=="Bledsoe", -1,growth_rate)),
aes (x=x+(day_num*6000)+10000,y=y+((growth_rate-1)*50000),
label=str_wrap(label, 15)),
size=2.5
)+
annotate("text",
x=bbox$xmax-.25xwidth, y=bbox$ymax+.08xheight,
label=str_wrap(growth_text,35), size=3.5, hjust=1
)+
Plot case legend lines.
geom_path(
data=legend_case, aes(x=x+((day_num-1)*6000)+offset_day*width,
y=y+((growth_rate-1)*50000),
group=paste0 (fips,offset), linewidth=offset_rate,
alpha=binned_growth_rate, colour=binned_growth_rate),
lineend="round"
) +
Text label for case legend lines.
annotate("text", x=bbox$xmax-.88*width, y=bbox$ymax+.04xheight,
label="Less", size=2.5)+
annotate("text", x=bbox$xmax-.8*width, y=bbox$ymax+.04xheight,
label="More", size=2.5)+
annotate("text",
x=bbox$xmax-.75*width, y=bbox$ymax+.08xheight,
label=str_wrap(case_text,35), size=3.5, hjust=0

8.4 Conclusions 185

)+
Title.
annotate("text",
x=bbox$xmax-.5*width, y=bbox$ymax+.15xheight,
label=title_text, size=5
)+

8.4 Conclusions

Communicating effectively with data is not an easy undertaking. Difficult
decisions must be made around how much detail to sacrifice in favour of clarity
and simplicity of message. Visual approaches can help here, giving cues that
order and prioritise information and that build explanatory narratives using
metaphor and other rhetorical devices. There are stellar examples of this
from in-house data journalism teams. We have considered some of these and
the careful design decisions made when communicating data-driven stories
in light of data, audience and intended purpose. Many data journalists use
ggplot2 as their visualization toolkit of choice, and in the technical section we
demonstrated how more designed graphics can be generated. This somewhat
fiddly approach to creating graphics is different from the style of workflow
envisaged in Chapter 3 and Chapter 4, on exploratory visual analysis. However,
as demonstrated through the examples in this chapter and the book more
generally, ggplot2 can be used for this more deliberative visualization design,
making control over annotations, text labels and embedded graphics useful
skills to develop.

8.5 Further Reading

Cédric Scherer’s excellent workshop at posit::conf(2023). Highly recommended
as a resource for covering in a methodical way how to parameterise ggplot2
scales, coordinate systems, facets, annotation and labelling.

o Cédric Scherer, 2023. “Designing Data Visualizations to Successfully Tell a
Story”2, A posit::conf(2023) Workshop.

2https ://posit-conf-2023.github.io/dataviz-storytelling/

https://posit-conf-2023.github.io/dataviz-storytelling/

186 8 Visual Storytelling

For a similarly excellent resource see:

o Kieran Healy, 2019. “Data Visualization: A Practical Introduction”, Prince-
ton, NJ: Princeton University Press.
— Chapter 8

Data journalists at the BBC have assembled a useful ‘cookbook’ demonstrating
basic but useful edits to standard ggplot2 graphics.

« BBC, 2019. “BBC Visual and Data Journalism cookbook for R graphics”3.

High-level but principled description of how to incorporate annotations, cus-
tomised scales and legends when generating plots for communication.

o Wickham, H., Cetinkaya-Rundel, M., Grolemund, G. 2023, “R for Data
Science, 2nd Edition”, Sebastopol, CA: O’Reilly.
— Chapter 11.

3https ://bbc.github.io/rcookbook/

https://bbc.github.io/rcookbook/

A

Task Answers

o
1 Task answers

This page contains answers to the Task activities presented in selected
chapters of the book.

A.1 From Chapter 2
Task 1
The completed data description table for the Citibike stations dataset.

Variable name Variable value = Measurement level

name “Central Park” Categorical-nominal
capacity 80 Ratio

rank_capacity 45 Ordinal

date_opened “2014-05-23” Interval

longitude -74.00149746 Interval

latitude 40.74177603 Interval

Task 2

A tibble: 7 x 3

day Customer Subscriber
<ord> <db1> <db1>
1 Sun 0.198 0.144
2 Mon 0.137 0.163
3 Tue 0.144 0.172
4 Wed 0.104 ©o 125
5 Thu 0.0973 0.122

187

188 A Task Answers

6 Fri 0.135 0.138
7 Sat 0.185 0.136

Code for exploring the proportion of trips made by day of week on user_type:

ny_temporal |>
group_by(day, user_type) |>
summarise(count=sum(count)) |> ungroup() |>
pivot_wider (names_from=user_type, values_from=count) |>

mutate(across(.cols=c(Customer, Subscriber), .fns=~.x/sum(.x)))

A.2 From Chapter 3
Task 1

The completed encoding description table for the Washington Post election
map (Figure 3.5).

Measurement Visual Visual
Data item level mark channel Rank
County location 1Interval Lines Position in x- 1
y- mag:order

County winner cat-nominal Lines Colour hue 2

id:category
County flip Cat-ordinal Lines 1D size 3
from 2012 mag:order
County Swing Ratio Lines Tilt/angle 4
fom 2012 mag:order
State ‘winner’ Cat-nominal Polygon Colour hue 2

id:category

Task 2

Code to produce a set of histograms similar to those in Figure 3.8.

data_gb |>
ggplot(mapping=aes(swing_con_lab)) +
geom_histogram(fill="#003c8f") +

Annotate with median Swing.

A.8 From Chapter 189

geom_vline(xintercept=4.44, size=.3)+
labs(x="Swing", y="count")+

facet_wrap(~region)

Task 3
The code to reproduce the graphic in Figure 3.11.

con <- "#0575c9"
lab <- "#edleOe"
other <- "#bdbdbd"

data_gb |>
mutate(is_flipped=seat_change_1719=="Conservative gain from Labour",
is_flipped=if_else(is.na(is_flipped), FALSE, is_flipped),

winner_19=case_when(

winner_19 == "Conservative" ~ "Conservative",
winner_19 == "Labour" ~ "Labour",
TRUE ~ "Other"

) >

ggplot(aes(x=con_17, y=con_19)) +
geom_point(aes(colour=winner_19, alpha=is_flipped,
shape=is_flipped)) +
geom_abline(intercept = 0, slope = 1, size=.3) +
scale_colour_manual(values=c(con,lab,other)) +
scale_alpha_ordinal(range=c(.5,1)) +
scale_shape_manual(values=c(21,19)) +
scale_x_continuous(limits=c(0,90)) +

labs(x="vote share 2017 ", y="vote share 2019")

A.3 From Chapter 4
Task 1
The code to reproduce the heatmap in the left column of Figure 4.6.

Vector of vehicles in order they appear in graphic.

Convert vehicle_type to factor to effect ordering.

order_type <- c("Car", "Taxi", "Bus", "Motorcycle", "Other","vVan",
"HGV", "Bicycle")

190 A Task Answers

For new is_inner variable used to facet plot.

inner_boroughs <- c("Camden", "Greenwich", "Hackney",
"Hammersmith and Fulham", "Islington","Kensington and Chelsea",
"Lambeth", "Lewisham", "Southwark", "Tower Hamlets", "Wandsworth",
"Westminster", "City of London")

Staged dataset where signed-chi residuals are created.

model_data <- ped_veh |>

filter(police_force == "Metropolitan Police" |
police_force == "City of London") |>
mutate(

is_inner=if_else(local_authority_district %in%
inner_boroughs, "inner", "outer"),

vehicle_type=factor(vehicle_type, levels=order_type)

ME

group_by(local_authority_district) |>

mutate(row_total=n()) |> ungroup() |>

group_by(vehicle_type) |>

mutate(col_total=n()) |> ungroup() |>

mutate(grand_total=n()) |>

group_by(local_authority_district, vehicle_type) |>

summarise(
observed=n(), row_total=first(row_total),
col_total=first(col_total), grand_total=first(grand_total),
expected=(row_totalxcol_total)/grand_total,
resid=(observed-expected) /sqrt(expected),
is_inner=first(is_inner)

) |> ungroup()

Find max residual value to ensure colour scheme is symmetrical on 0.

max_resid <- max(abs(model_data$resid))

Plot heatmap.
model_data |>
ggplot(aes(x=vehicle_type,
y=reorder (local_authority_district, row_total))) +
geom_tile(aes(fill=resid), colour="#ffffff", size=.4) +
facet_grid(is_inner~., scales="free_y", space="free_y") +
scale_fill_distiller(palette="RdBu", direction=-1,
Timits=c(-max_resid,max_resid)) +

guides(fill="none")

Task 2
The code to reproduce the design challenge plots in Figure 4.12.

A.8 From Chapter

Calculate crash freqs by IMD class of location,
dark/daylight and casulty age.
plot_data <- ped_veh |>

filter(
age_of_casualty>0, crash_quintile != "Data missing or out of range",
light_conditions != "Data missing or out of range"
) 1>

mutate(is_daylight=factor(
if_else(light_conditions == "Daylight", "daylight", "dark"),
levels=c("dark", "daylight"))) |>
group_by(age_of_casualty, is_daylight, crash_quintile) |>

summarise(count=n()) |> ungroup()

Top plot.
plot_data |>
ggplot(aes(x=age_of_casualty, y=count)) +
geom_col(aes(colour=is_daylight), width=1) +
facet_grid(is_daylight~crash_quintile, space="free_y",
scales="free_y", labeller=labeller(c("daylight", "dark"))) +
scale_colour_manual(values=c("#08519c", "#c6dbef"), guide="none")+
labs(y="crash count in hundreds", x="casualty age") +
scale_y_continuous(
breaks=c(c(2,4,6,8,10)*100),

labels = scales::comma_format(scale = .01))

Bottom plot.
plot_data |>
Calcuate % crashes in daylight and expected daylight counts
in each data item from this.
mutate(total=sum(count)) |>
pivot_wider (names_from=is_daylight, values_from=count) |>
mutate(
prop_daylight=sum(daylight, na.rm=TRUE)/first(total),
expected_daylight=(daylight+dark)*prop_daylight
E
pivot_longer (cols=c(dark, daylight),
names_to="1is_daylight", values_to="count") |>
Plot.
ggplot(aes(x=age_of_casualty, y=count)) +
geom_col(aes(colour=is_daylight), width=1) +
geom_line(aes(y=expected_daylight, group=crash_quintile),
colour="#737373", linewidth=.4) +
facet_wrap(~crash_quintile,
labeller=1labeller (c("daylight", "dark")), nrow=1) +

191

192 A Task Answers

scale_colour_manual(values=c("#08519c", "#c6dbef"), guide="none")+
labs(y="crash count in hundreds", x="casualty age") +
scale_y_continuous(

breaks=c(c(4,8,12)x100),

labels = scales::comma_format(scale = .01))

A.4 From Chapter 5
Task 1

o For jobs filled in the City of London (CoL), from which borough does the
largest number of workers commute?
— Answer: Wandsworth (Wnd)
o For jobs filled in Camden (Cmd), from which borough does the largest
number of workers commute?
— Answer: Barnet (Barnt), maybe Islington (Isl)
o Eyeballing the graphic, identify the top 3 boroughs which appear to have
the most localised labour markets in terms of in-commuting.
— Answer: Bexleyheath (Bxl), Havering (Hvr), Barking and Dagenham
(BaD). Also, Sutton (Sttn), Grenwich (Grn) look very localised.

A.5 From Chapter 6

The code to reproduce the annotated parallel-coordinate-plot in Figure 6.3.

List of variables ordered ascending by correlation with leave.
order_vars <- cons_data |>
mutate(across(c(younger:heavy_industry), ~(.x-mean(.x))/sd(.x))) |>
pivot_longer (cols=younger:heavy_industry,
names_to="expl_var", values_to="prop") |>
group_by(expl_var) |>
summarise(cor=cor(leave,prop)) |> ungroup() |> arrange(cor) |>
pull(expl_var)

Staged dataset of z-score transformed variables and variables
identifying extreme Leave/Remain constituencies for highlighting.
plot_data <- cons_data |>

A.5 From Chapter 6

mutate(
majority=if_else(leave>.5, "Leave", "Remain"),
across(c(leave, younger:heavy_industry), ~(.x-mean(.x))/sd(.x)),
decile=ntile(leave, 10), is_extreme=decile > 9 | decile < 2
> P>
select(
majority, is_extreme, decile, constituency_name, leave, degree,
professional, younger, eu_born, no_car, white, own_home, christian,
not_good_health, heavy_industry) |>
Change polarity in selected variables.
mutate(degree=-degree, professional=-professional, younger=-younger,
eu_born=-eu_born, no_car=-no_car) |>
pivot_longer(cols= c(leave:not_good_health),
names_to="var", values_to="z_score") |>
Explanatory variable as factor ordered according to known assocs
with Leave.
mutate(
var=factor(var, levels=c("leave", order_vars)),
var=fct_rev(var)
)
Sample extreme constituencies, for Leave and Remain,
each time plot is built.
annotate_data <- plot_data |>
filter (is_extreme) |>
group_by(decile) |>

sample_n(1l) |> pull(constituency_name)

plot_data |>
ggplot(aes(x=var, y=z_score, colour=majority,
group=c(constituency_name))) +
geom_path(alpha=0.15, linewidth=.2) +
Highlight extreme remain/leave constituencies.
geom_path(data= . %>%
filter (constituency_name %in% annotate_data),
alpha=1, linewidth=.4) +
geom_text(
data= . %>%
filter (constituency_name %in% annotate_data, var=="leave"),
aes(x="leave", y=z_score, label=str_wrap(constituency_name,15)),
size=3.5, vjust="top", hjust="centre", nudge_x=+.5
) +
scale_colour_manual(values=c("#b2182b","#2166ac")) +
coord_flip()

193

https://www.taylorandfrancis.com

References

BBC Visual and Data Journalism Team. 2019. “BBC Visual and Data Jour-
nalism Cookbook for R Graphics.” https://github.com/bbec/rcookbook.
Beecham, R. 2020. “Using Position, Angle and Thickness to Expose the Shifting
Geographies of the 2019 UK General Election.” Environment and Planning
A: Economy and Space 52 (5): 833-36. https://doi.org/10.1177/0308518X

20909392.

. 2024. “gridmappr: An R Package for Creating Small Multiple Gridmap
Layouts.” In GISRUK 2024. Leeds, UK: Zenodo. https://doi.org/10.5281/
zenodo.10926863.

Beecham, R., J. Dykes, L. Hama, and N. Lomax. 2021. “On the Use of
‘Glyphmaps’ for Analysing the Scale and Temporal Spread of COVID-19
Reported Cases.” ISPRS International Journal of Geo-Information 10 (4).
https://doi.org,/10.3390/ijgi10040213.

Beecham, R., J. Dykes, W. Meulemans, A. Slingsby, C. Turkay, and J. Wood.
2017. “Map Line-Ups: Effects of Spatial Structure on Graphical Inference.”
IEEFE Transactions on Visualization & Computer Graphics 23 (1): 391-400.
https://doi.org/10.1109/TVCG.2016.2598362.

Beecham, R., J. Dykes, C. Rooney, and W. Wong. 2021. “Design Exposition
Discussion Documents for Rich Design Discourse in Applied Visualization.”
IEEE Transactions on Visualization and Computer Graphics 27 (8): 3451
62. https://doi.org/10.1109/TVCG.2020.2979433.

Beecham, R., and R. Lovelace. 2023. “A Framework for Inserting Visually-
Supported Inferences into Geographical Analysis Workflow: Application to
Road Safety Research” 55: 345-66. https://doi.org/10.1111/gean.12338.

Beecham, R., and A. Slingsby. 2019. “Characterising Labour Market Self-
Containment in London with Geographically Arranged Small Multiples.”
Environment and Planning A: Economy and Space 51 (6): 1217-24. https:
//doi.org/10.1177,/0308518x19850580.

Beecham, R., A. Slingsby, and C. Brunsdon. 2018. “Locally-Varying Explana-
tions Behind the United Kingdom’s Vote to Leave the European Union.”
Journal of Spatial Information Science 16: 117-36. https://doi.org/10.531
1/josis.2018.16.377.

Beecham, R., N. Williams, and L. Comber. 2020. “Regionally-Structured
Explanations Behind Area-Level Populism: An Update to Recent Ecological
Analyses” PLOS One 15 (3): €0229974. https://doi.org/10.1371/journal.
pone.0229974.

195

https://github.com/bbc/rcookbook
https://doi.org/10.5281/zenodo.10926863
https://doi.org/10.3390/ijgi10040213
https://doi.org/10.1109/TVCG.2016.2598862
https://doi.org/10.1109/TVCG.2020.2979433
https://doi.org/10.1111/gean.12338
https://doi.org/10.5311/josis.2018.16.377
https://doi.org/10.1371/journal.pone.0229974
https://doi.org/10.1177/0308518X20909392
https://doi.org/10.1177/0308518X20909392
https://doi.org/10.5281/zenodo.10926863
https://doi.org/10.1177/0308518x19850580
https://doi.org/10.1177/0308518x19850580
https://doi.org/10.5311/josis.2018.16.377
https://doi.org/10.1371/journal.pone.0229974

196 References

Beecham, R., and J. Wood. 2014. “Exploring Gendered Cycling Behaviours
Within a Large-Scale Behavioural Data-Set.” Transportation Planning and
Technology 37 (1): 83-97. https://doi.org/10.1080/03081060.2013.844903.

Beecham, R., Y. Yang, C. Tait, and R. Lovelace. 2023. “Connected Bikeability
in London: Which Localities Are Better Connected by Bike and Does This
Matter?” Environment and Planning B: Urban Analytics and City Science
50 (8): 2103-17. https://doi.org/10.1177/23998083231165122.

Bhatia, A., and H. Reich. 2020. Covidtrends. https://github.com/aatishb/cov
idtrends.

Boukhelifa, N., A. Bezerianos, T. Isenberg, and J. Fekete. 2012. “Evaluating
Sketchiness as a Visual Variable for the Depiction of Qualitative Uncer-
tainty.” IEFE Transactions on Visualization and Computer Graphics 18
(12): 2769-78. https://doi.org/10.1109/TVCG.2012.220.

Brewer, C., and A. Campbell. 1998. “Beyond Graduated Circles: Varied Point
Symbols for Representing Quantitative Data on Maps.” Cartographic Per-
spectives, no. 29: 6-25. https://doi.org/10.14714/CP29.672.

Brunsdon, C., and M. Charlton. 2011. “An Assessment of the Effective-
ness of Multiple Hypothesis Testing for Geographical Anomaly Detec-
tion.” Environment and Planning B: Planning and Design 38 (2): 216-30.
https://doi.org/10.1068/b36093.

Brunsdon, C., and A. Comber. 2021. “Opening Practice: Supporting Repro-
ducibility and Critical Spatial Data Science.” Journal of Geographical
Systems 23: 477-96. https://doi.org/10.1007/s10109-020-00334-2.

Brunsdon, C., M. Fortheringham, and M. Charlton. 2002. “Geographically
Weighted Summary Statistics: A Framework for Localised Exploratory
Data Analysis.” Computers, Environment and Urban Systems 26: 501-24.
https://doi.org/10.1016/S0198-9715(01)00009-6.

Buja, A., D. Cook, H. Hofmann, M. Lawrence, E-K Lee, D. Swayne, and
H. Wickham. 2009. “Statistical Inference for Exploratory Data Analysis
and Model Diagnostics.” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 367 (1906): 4361-83.
https://doi.org/10.1098 /rsta.2009.0120.

Burn-Murdoch, J. 2020. “BELIV 2020 Keynote: John Burn-Murdoch.” In 2020
IEEE Workshop on Evaluation and Beyond - Methodological Approaches to
Visualization (BELIV), 9-9. https://doi.org/10.1109/BELIV51497.2020.00
007.

. 2021. “Vaccines Are Working: Charts That Show the Covid Endgame.”

The Financial Times. https://www.ft.com/content/d71729a3-72e8-490c-

bd7e-757027f9b226.

. 2023. “Making Charts That Make an Impact.” Invited talk, Data
Visualization Society’s Outlier Conference. https://www.youtube.com/wa
tch?v=tIbaQUo6H9g&ab_ channel=DataVisualizationSociety.

Butler, D., and S. Van Beek. 1990. “Why Not Swing? Measuring Electoral
Change.” Political Science €& Politics 23 (2): 178-84. https://doi.org/10.2
307/420065.

https://doi.org/10.1080/03081060.2013.844903
https://doi.org/10.1177/23998083231165122
https://github.com/aatishb/covidtrends
https://doi.org/10.1109/TVCG.2012.220
https://doi.org/10.14714/CP29.672
https://doi.org/10.1068/b36093
https://doi.org/10.1007/s10109-020-00334-2
https://doi.org/10.1016/S0198-9715(01)00009-6
https://doi.org/10.1098/rsta.2009.0120
https://doi.org/10.1109/BELIV51497.2020.00007
https://www.ft.com/content/d71729a3-72e8-490cbd7e-757027f9b226
https://www.youtube.com/watch?v=tIbaQUo6H9g&ab_channel=DataVisualizationSociety
https://doi.org/10.2307/420065
https://github.com/aatishb/covidtrends
https://doi.org/10.1109/BELIV51497.2020.00007
https://www.youtube.com/watch?v=tIbaQUo6H9g&ab_channel=DataVisualizationSociety
https://doi.org/10.2307/420065
https://www.ft.com/content/d71729a3-72e8-490cbd7e-757027f9b226

References 197

Charlotte Muth, L. 2018. “Your Friendly Guide to Colors in Data Visualisation:
An Overview of Color Tools.” Datawrapper. https://www.datawrapper.de
/blog/colorguide.

Cleveland, W., and R. McGill. 1984. “Graphical Perception: Theory, Ex-
perimentation, and Application to the Development of Graphical Meth-
ods.” Journal of the American Statistical Association 79 (387): 531-54.
https://doi.org/10.2307/2288400.

Comber, A., C. Brunsdon, M. Charlton, G. Dong, R. Harris, B. Lu, Y. L,
et al. 2023. “A Route Map for Successful Applications of Geographically
Weighted Regression.” Geographical Analysis 55 (1): 155-78. https://doi.or
g/10.1111/gean.12316.

Correll, M., and M. Gleicher. 2014. “Error Bars Considered Harmful: Exploring
Alternate Encodings for Mean and Error.” IEEE Transactions on Visual-
ization and Computer Graphics 20 (12): 2142-51. https://doi.org/10.1109/
TVCG.2014.2346298.

Donoho, D. 2017. “50 Years of Data Science.” Journal of Computational and
Graphical Statistics 26 (6): 745-66. https://doi.org/10.1080,/10618600.2017.
1384734.

Dykes, J., and C. Brunsdon. 2007. “Geographically Weighted Visualiza-
tion: Interactive Graphics for Scale-Varying Exploratory Analysis.” I[EEE
Transactions on Visualization and Computer Graphics 13 (6): 1161-68.
https://doi.org/10.1109/tvcg.2007.70558.

Financial Times. 2020. “Coronavirus Trajectory Tracker Explained.” https:
/ /www.ft.com/video/9a72a9d4-8db1-4615-8333-4b73ae3ddf18.

———. 2021. “‘It’s not a bad flu season’ - Covid myths debunked with data.”
https://www-ft-com.proxy-ub.rug.nl/video/0cd6f9f9-664e-40f9-bad4-
ddeb9d7c746¢?playlist-name=latest&playlist-offset=223.

Franconeri, S. L., L. M. Padilla, P. Shah, J. M. Zacks, and J. Hull-
man. 2021. “The Science of Visual Data Communication: What
Works.” Psychological Science in the Public Interest 22 (3): 110-61.
https://doi.org/10.1177/15291006211051956 1.

Friendly, M. 1992. “Mosaic Displays for Loglinear Models.” In ASA, Proceedings
of the Statistical Graphics Section, 61-68.

Gamio, L., and D. Keating. 2016. “How Trump Redrew the Electoral Map, from
Sea to Shining Sea.” The Washington Post. https://www.washingtonpost.c
om/graphics/politics/2016-election /election-results-from-coast-to-coast,/.

Gelman, A. 2004. “Exploratory Data Analysis for Complex Models.” Journal
of Computational and Graphical Statistics 13 (4): 755-79. https://doi.org/
10.1198/106186004X11435.

Gelman, A., and J. Hill. 2006. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge, UK: Cambridge University Press.
https://doi.org/10.1017/CBO9780511790942.

Gelman, A., J. Hill, and A. Vehtari. 2020. Regression and Other Stories.

Thttps://doi.org/10.1177/15291006211051956 %20

https://www.datawrapper.de/blog/colorguide
https://doi.org/10.2307/2288400
https://doi.org/10.1111/gean.12316
https://doi.org/10.1109/TVCG.2014.2346298
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1109/tvcg.2007.70558
https://www.ft.com/video/9a72a9d4-8db1-4615-8333-4b73ae3ddff8
https://www-ft-com.proxy-ub.rug.nl/video/0cd6f9f9-664e-40f9-bad4-dde59d7c746c?playlist-name=latest&playlist-offset=223
https://doi.org/10.1177/15291006211051956
https://www.washingtonpost.com/graphics/politics/2016-election/election-results-from-coast-to-coast
https://doi.org/10.1198/106186004X11435
https://doi.org/10.1017/CBO9780511790942
https://doi.org/10.1177/15291006211051956%20
https://www.datawrapper.de/blog/colorguide
https://doi.org/10.1111/gean.12316
https://doi.org/10.1109/TVCG.2014.2346298
https://doi.org/10.1080/10618600.2017.1384734
https://www.ft.com/video/9a72a9d4-8db1-4615-8333-4b73ae3ddff8
https://www-ft-com.proxy-ub.rug.nl/video/0cd6f9f9-664e-40f9-bad4-dde59d7c746c?playlist-name=latest&playlist-offset=223
https://www.washingtonpost.com/graphics/politics/2016-election/election-results-from-coast-to-coast
https://doi.org/10.1198/106186004X11435

198 References

Analytical Methods for Social Research. Cambridge University Press. https:
//doi.org/10.1017/9781139161879.

Gelman, A., J. Hill, and M. Yajima. 2012. “Why We (Usually) Don’t Have to
Worry about Multiple Comparisons.” Journal of Research on Educational
Effectiveness 5 (2): 189-211. https://doi.org/10.1080/19345747.2011.6182
13.

Gleicher, M., D. Albers, R. Walker, 1. Jusufi, C. Hansen, and J. Roberts. 2011.
“Visual Comparison for Information Visualization.” Information Visualiza-
tion 10 (4): 289-309. https://doi.org/10.1177/1473871611416549.

Gross, J. 2016. “How to Better Communicate Election Forecasts — in One
Simple Chart.” The Washington Post. https://www.washingtonpost.com/n
ews/monkey-cage/wp/2016/11/29/how-to-better-communicate-election-
forecasts-in-one-simple-chart /.

Hanretty, C. 2017. “Areal Interpolation and the UK’s Referendum on EU
Membership.” Journal of Elections, Public Opinion and Parties 37 (4):
466-83. https://doi.org/10.1080/17457289.2017.1287081.

Haroz, S., R. Kosara, and S. L. Franconeri. 2016. “The Connected Scatterplot
for Presenting Paired Time Series.” IEEE Transactions on Visualization
and Computer Graphics 22 (9): 2174-86. https://doi.org/10.1109/TVCG.2
015.2502587.

Harrower, M., and C. A. Brewer. 2003. “ColorBrewer.org: An Online Tool
for Selecting Colour Schemes for Maps.” The Cartographic Journal 40 (1):
27-37. https://doi.org/10.1179/000870403235002042.

Healy, K. 2019. Data Visualization: A Practical Introduction. Princeton, NJ:
Princeton University Press. https://socviz.co.

. 2020. covdata: COVID-19 Case and Mortality Time Series. http:
//kjhealy.github.io/covdata.

Heer, J., and M. Bostock. 2010. “Crowdsourcing Graphical Perception: Using
Mechanical Turk to Assess Visualization Design.” In ACM Human Factors
in Computing Systems, 203-12. https://doi.org/10.1145/1753326.1753357.

Henry Riche, N., C. Hurter, N. Diakopoulos, and S. Carpendale, eds. 2018.
Data-Driven Storytelling. Abingdon, UK: CRC Press. https://doi.org/10.1
201/9781315281575.

Hullman, J., and A. Gelman. 2021. “Designing for Interactive Exploratory
Data Analysis Requires Theories of Graphical Inference.” Harvard Data
Science Review 3 (3).

Hullman, J., P. Resnick, and E. Adar. 2015. “Hypothetical Outcome Plots
Outperform Error Bars and Violin Plots for Inferences About Reliability
of Variable Ordering.” PLOS One 10 (11). https://doi.org/10.1371/journal.
pone.0142444.

Ismay, C., and A. Kim. 2020. Statistical Inference via Data Science: A
ModernDive into R and the Tidyverse. New York, NY: CRC Press.
https://doi.org/10.1201/9780367409913.

https://doi.org/10.1080/19345747.2011.618213
https://doi.org/10.1177/1473871611416549
https://www.washingtonpost.com/news/monkey-cage/wp/2016/11/29/how-to-better-communicate-electionforecasts-in-one-simple-chart
https://doi.org/10.1080/17457289.2017.1287081
https://doi.org/10.1109/TVCG.2015.2502587
https://doi.org/10.1179/000870403235002042
https://socviz.co
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1201/9781315281575
https://doi.org/10.1371/journal.pone.0142444
https://doi.org/10.1201/9780367409913
https://doi.org/10.1017/9781139161879
https://doi.org/10.1017/9781139161879
https://doi.org/10.1080/19345747.2011.618213
https://www.washingtonpost.com/news/monkey-cage/wp/2016/11/29/how-to-better-communicate-electionforecasts-in-one-simple-chart
https://www.washingtonpost.com/news/monkey-cage/wp/2016/11/29/how-to-better-communicate-electionforecasts-in-one-simple-chart
https://doi.org/10.1109/TVCG.2015.2502587
http://kjhealy.github.io/covdata
http://kjhealy.github.io/covdata
https://doi.org/10.1201/9781315281575
https://doi.org/10.1371/journal.pone.0142444

References 199

Jeppson, H., and H. Hofmann. 2023. “Generalized Mosaic Plots in the ggplot2
Framework.” The R Journal 14 (4): 50-78. https://doi.org/10.32614/R.J-
2023-013.

Kale, A., F. Nguyen, M. Kay, and J. Hullman. 2019. “Hypothetical Outcome
Plots Help Untrained Observers Judge Trends in Ambiguous Data.” IEEE
Transactions on Visualization and Computer Graphics 25 (1): 892-902.
https://doi.org/10.1109/TVCG.2018.2864909.

Kay, M. 2021. “Uncertainty Visualization as a Moral Imperative.” Invited talk,
BostonCHI meeting. https://www.youtube.com/watch?v=mfQ3QVyw4N
0&ab_channel=BostonCHI.

. 2024. “ggdist: Visualizations of Distributions and Uncertainty in the
Grammar of Graphics.” IEEE Transactions on Visualization and Computer
Graphics 30 (1): 414-24. https://doi.org/10.1109/TVCG.2023.3327195.

Kinkeldey, C., A. MacEachren, and J. Schiewe. 2014. “How to Assess Visual
Communication of Uncertainty? A Systematic Review of Geospatial Un-
certainty Visualisation User Studies.” The Cartographic Journal 51 (4):
372-86. https://doi.org/10.1179/1743277414Y.0000000099.

Kosara, R. 2023. “Lesson 4: Presentation, Uncertainty, ISOTYPE.” Observ-
ableHQ Notebook; ObservableHQ. https://observablehq.com/@observable
hq/lesson-4-presentation-uncertainty-isotype?collection=@Qobservablehq
/advanced-data-vis-course.

Kuhn, M., and J. Silge. 2023. Tidy Modelling with R. Sebastopol, CA: O'Reilly.

Lawlor, O., and H. Robertson. 2021. “Masters series: Maarten Lambrechts’
connected scatter plot.” https://www.washingtonpost.com/news/monkey-
cage/wp/2016/11/29/how-to-better-communicate-election-forecasts-in-
one-simple-chart /?noredirect=on.

Lovelace, R., M. Morgan, .. Hama, M. Padgham, D. Ranzolin, and A. Sparks.
2019. “Stats 19: A Package for Working with Open Road Crash Data.” The
Journal of Open Source Software 4 (33): 1181. https://doi.org/10.21105/]
0ss.01181.

Lovelace, R., J. Nowosad, and J. Muenchow. 2019. Geocomputation with R.
London, UK: CRC Press.

Loy, A., H. Hofmann, and D. Cook. 2017. “Model Choice and Diagnostics for
Linear Mixed-Effects Models Using Statistics on Street Corners.” Journal
of Computational and Graphical Statistics 26 (3): 478-92. https://doi.org/
10.1080/10618600.2017.1330207.

McGill, Tukey, R., and W. A. Larsen. 1978. “Variations of Box Plots.” The
American Statistician 32: 12-16. https://doi.org/10.2307/2683468.

Munzner, T. 2014. Visualization Analysis and Design. AK Peters Visualization
Series. Boca Raton, FL: CRC Press.

NHC. 2023. “National Hurricane Center and Central Pacific Hurricane Center.”
https://www.nhc.noaa.gov/.

Noble, S., D. McLennan, M. Noble, E. Plunkett, N. Gutacker, M. Silk, and
G. Wright. 2019. “The English Indices of Deprivation 2019.” Ministry of
Housing, Communities & Local Government. https://www.gov.uk/gover
nment /statistics/english-indices-of-deprivation-2019.

https://doi.org/10.32614/RJ-2023-013
https://doi.org/10.1109/TVCG.2018.2864909
https://doi.org/10.1109/TVCG.2023.3327195
https://doi.org/10.1179/1743277414Y.0000000099
https://observablehq.com/@observablehq/lesson-4-presentation-uncertainty-isotype?collection=@observablehq/advanced-data-vis-course
https://www.washingtonpost.com/news/monkeycage/wp/2016/11/29/how-to-better-communicate-election-forecasts-inone-simple-chart/?noredirect=on
https://doi.org/10.21105/joss.01181
https://doi.org/10.1080/10618600.2017.1330207
https://doi.org/10.2307/2683468
https://www.nhc.noaa.gov/
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
https://doi.org/10.32614/RJ-2023-013
https://www.youtube.com/watch?v=mfQ3QVyw4N0&ab_channel=BostonCHI
https://www.youtube.com/watch?v=mfQ3QVyw4N0&ab_channel=BostonCHI
https://observablehq.com/@observablehq/lesson-4-presentation-uncertainty-isotype?collection=@observablehq/advanced-data-vis-course
https://observablehq.com/@observablehq/lesson-4-presentation-uncertainty-isotype?collection=@observablehq/advanced-data-vis-course
https://www.washingtonpost.com/news/monkeycage/wp/2016/11/29/how-to-better-communicate-election-forecasts-inone-simple-chart/?noredirect=on
https://www.washingtonpost.com/news/monkeycage/wp/2016/11/29/how-to-better-communicate-election-forecasts-inone-simple-chart/?noredirect=on
https://doi.org/10.21105/joss.01181
https://doi.org/10.1080/10618600.2017.1330207
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019

200 References

Open Science Collaboration. 2015. “Estimating the Reproducibility of Psycho-
logical Science.” Science 349 (6251): aac4716. https://doi.org/10.1126/scie
nce.aac4716.

Padilla, L., M. Kay, and J. Hullman. 2021. “Uncertainty Visualization.” In Wiley
StatsRef: Statistics Reference Online, edited by B. Everitt N. Balakrishnan
T. Colton and J. L. Teugels. Wiley. https://doi.org/10.1002/978111844511
2.5tat08296.

Pebesma, E. 2018. “Simple Features for R: Standardized Support for Spatial
Vector Data.” The R Journal 10 (1): 439-46. https://doi.org/10.32614/RJ-
2018-0009.

Roth, R. 2021. “Cartographic Design as Visual Storytelling: Synthesis and
Review of Map-Based Narratives, Genres, and Tropes.” The Cartographic
Journal 58 (1): 83-114. https://doi.org/10.1080/00087041.2019.1633103.

Scherer, C. 2023. “Designing Data Visualizations to Successfully Tell a Story’
Workshop at Posit::conf(2023), Chicago, IL. https://posit-conf-2023.githu
b.io/dataviz-storytelling/.

Silver, N. 2016. “Why FiveThirtyEight Gave Trump a Better Chance Than
Almost Anyone Else” FiveThirtyEight. https://fivethirtyeight.com/featu
res/why-fivethirtyeight-gave-trump-a-better-chance-than-almost-anyone-
else.

Stevens, S. 1946. “On the Theory of Scales of Measurement.” Science 103
(2684): 677-80. https://doi.org/10.1126/science.103.2684.677.

The New York Times. 2021. Coronavirus (Covid-19) Data in the United States.
https://github.com/nytimes/covid-19-data.

The Turing Way Community. 2025. “The Turing Way: A Handbook for Repro-
ducible, Ethical and Collaborative Research.” Zenodo. https://doi.org/10.5
281 /zenodo.15213042.

Thebault, R., and A. Hauslohner. 2020. “Covid-19’s Deadly New Surge Is in
Rural America as States Re-Open - The Washington Post.” The Washington
Post. https://www.washingtonpost.com /nation/2020/05/24/coronavirus-
rural-america-outbreaks/?arc404=true.

Tortosa, E. V., R. Lovelace, E. Heinen, and R. P. Mann. 2021. “Socioeconomic
Inequalities in Cycling Safety: An Analysis of Cycling Injury Risk by
Residential Deprivation Level in England.” Journal of Transport & Health
23: 101291. https://doi.org/10.1016/j.jth.2021.101291.

Tufte, E. 1983. The Visual Display of Quantitative Information. Cheshire, CT:
Graphics Press.

Tukey, J. W. 1962. “The Future of Data Analysis.” The Annals of Mathematical
Statistics 33 (1): 1-67. https://doi.org/10.1214 /aoms/1177704711.

Tukey, John W. 1977. Ezploratory Data Analysis. Reading, MA: Addison-
Wesley.

Uberoi, E., C. Baker, and R. Cracknell. 2020. “General Election 2019: Full
Results and Analysis.” House of Commons Library. https://commonslibra
ry.parliament.uk/research-briefings/cbp-8749/.

)

https://doi.org/10.1126/science.aac4716
https://doi.org/10.1002/9781118445112.stat08296
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1080/00087041.2019.1633103
https://posit-conf-2023.github.io/dataviz-storytelling
https://fivethirtyeight.com/features/why-fivethirtyeight-gave-trump-a-better-chance-than-almost-anyoneelse
https://doi.org/10.1126/science.103.2684.677
https://github.com/nytimes/covid-19-data
https://doi.org/10.5
https://www.washingtonpost.com/nation/2020/05/24/coronavirusrural-america-outbreaks/?arc404=true
https://doi.org/10.1016/j.jth.2021.101291
https://doi.org/10.1214/aoms/1177704711
https://commonslibrary.parliament.uk/research-briefings/cbp-8749
https://posit-conf-2023.github.io/dataviz-storytelling
https://fivethirtyeight.com/features/why-fivethirtyeight-gave-trump-a-better-chance-than-almost-anyoneelse
https://fivethirtyeight.com/features/why-fivethirtyeight-gave-trump-a-better-chance-than-almost-anyoneelse
https://doi.org/10.5281/zenodo.15213042
https://www.washingtonpost.com/nation/2020/05/24/coronavirusrural-america-outbreaks/?arc404=true
https://commonslibrary.parliament.uk/research-briefings/cbp-8749
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1002/9781118445112.stat08296
https://doi.org/10.32614/RJ-2018-009

References 201

Van Goethem, A., A. Reimer, B. Speckmann, and J. Wood. 2014. “Stenomaps:
Shorthand for Shapes.” IEEE Transactions on Visualization and Computer
Graphics 20 (12): 2053-62. https://doi.org/10.1109/TVCG.2014.2346274.

Visvalingam, M. 1981. “The Signed Chi-Score Measure for the Classification
and Mapping of Polychotomous Data.” The Cartographic Journal 18 (1):
32-43. https://doi.org/10.1179/caj.1981.18.1.32.

White, T. 2017. “Symbolization and the Visual Variables.” In The Geographic
Information Science € Technology Body of Knowledge, edited by John P.
Wilson.

Wickham, H. 2010. “A Layered Grammar of Graphics.” Journal of Computa-
tional and Graphical Statistics 19 (1): 3-28. https://doi.org/10.1198/jcgs.2
009.07098.

. 2014. “Tidy Data.” Journal of Statistical Software 59 (10): 1-23.
https://doi.org/10.18637/jss.v059.i110.

Wickham, H., M. Cetinkaya-Rundel, and G. Grolemund. 2023. R for Data
Science: Import, Tidy, Transform, Visualize, and Model Data. Second.
Sebastopol, CA: O’Reilly Media.

Wickham, H., D. Cook, H. Hofmann, and A. Buja. 2010. “Graphical Inference
for Infovis.” IEEE Transactions on Visualization and Computer Graphics
16 (6): 973-79. https://doi.org/10.1109/TVCG.2010.161.

Wickham, H., and G. Grolemund. 2017. R for Data Science: Import, Tidy,
Transform, Visualize, and Model Data. Sebastopol, CA: O'Reilly Media.

Wickham, H., D. Navarro, and T. Lin Pedersen. 2023. ggplot2: Elegant Graphics
for Data Analysis. 3rd ed. New York, NY: Springer.

Wilkinson, L. 1999. The Grammar of Graphics. New York, NY: Springer.

Wolf, L. J., L. Anselin, D. Arribas-Bel, and L. Rivers Mobley. 2021. “On Spatial
and Platial Dependence: Examining Shrinkage in Spatially Dependent
Multilevel Models.” Annals of the American Association of Geographers
111 (6): 1679-91. https://doi.org/10.1080,/24694452.2020.1841602.

Wood, J., J. Dykes, and A. Slingsby. 2010. “Visualisation of Origins, Destina-
tions and Flows with OD Maps.” The Cartographic Journal 47 (2): 117-29.
https://doi.org/10.1179/000870410X12658023467367.

Wood, J., P. Isenberg, T. Isenberg, J. Dykes, N. Boukhelifa, and A. Slingsby.
2012. “Sketchy Rendering for Information Visualization.” IEEE Transac-
tions on Visualization and Computer Graphics 18 (12): 2749-58. https:
//doi.org/10.1109/TVCG.2012.262.

Wood, J., A. Kachkaev, and J. Dykes. 2018. “Design Exposition with Literate
Visualization.” IEEE Transactions on Visualization and Computer Graphics
25 (1): 759-68. https://doi.org/10.1109/TVCG.2018.2864836.

Wood, J., A. Slingsby, and J. Dykes. 2011. “Visualizing the Dynamics of
London’s Bicycle-Hire Scheme.” Cartographica: The International Journal
for Geographic Information and Geovisualization, no. 4: 239-51. https:
//doi.org/10.1179/000870410X12658023467367.

Yang, F., M. Cau, C. Mortenson, H. Fakhari, A. D. Lokmanoglu, J. Hullman, S.
Franconeri, N. Diakopoulos, E. C. Nisbet, and M. Kay. 2024. “Swaying the

https://doi.org/10.1109/TVCG.2014.2346274
https://doi.org/10.1179/caj.1981.18.1.32
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.1109/TVCG.2010.161
https://doi.org/10.1080/24694452.2020.1841602
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.1109/TVCG.2018.2864836
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1109/TVCG.2012.262
https://doi.org/10.1109/TVCG.2012.262
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.1179/000870410X12658023467367

202 References

Public? Impacts of Election Forecast Visualizations on Emotion, Trust, and
Intention in the 2022 U.S. Midterms.” IEEE Transactions on Visualization
and Computer Graphics 30 (1): 23-33. https://doi.org/10.1109/TVCG.202
3.3327356.

Yang, Y., R. Beecham, A. Heppenstall, A. Turner, and A. Comber. 2022.
“Understanding the Impacts of Public Transit Disruptions on Bikeshare
Schemes and Cycling Behaviours Using Spatiotemporal and Graph-Based
Analysis: A Case Study of Four London Tube Strikes.” Journal of Transport
Geography 98: 103255. https://doi.org/10.1016/j.jtrangeo.2021.103255.

https://doi.org/10.1109/TVCG.2023.3327356
https://doi.org/10.1016/j.jtrangeo.2021.103255
https://doi.org/10.1109/TVCG.2023.3327356

Index

Bayesian risk ratios, 156 datasets
bikeshare Census, 98, 124, 133, 174

gender, 5 covid-19 cases, 175-185

London, 3, 5 EU referendum, 122-146

New York, 20-39 London bikeshare, 3
bootstrapping, 153, 154, 158, 161-164 New York Citibike, 20-39
Brexit, 122-145 stats19, 74, 84-95, 148-164

UK General Election, 52-70

chi-square statistic, 80, 114 design exposition, 172
code distributional plots

list-column, 143, 162 bOXplOtS, 76

factors, 59, 88, 110 column bars, 77

functional programming, density plots, 76

133-146, 161-164 dot plots, 78

functions, 33-36 heat maps, 78

pipes, 27 histograms, 56, 76
colour, 51, 59, 81, 117 rank-size plots, 5
commuting, 98-117 strip-plots, 75
complete spatial randomness, 128 dummy variable, 129
computational notebooks, 8
cone of uncertainty, 149 elections, 42, 43, 52, 121
confidence intervals, 127, 128, 131, error bars, 154

153 exploratory data analysis

covid-19, 167-185 comparison strategies, 82-83, 169
curve schematisation, 149 definition, 6, 73-74, 83

models, 80-81, 89-95
data density, 148

data frames, 20 false positive rate, 156
data visualization Financial Times, 168, 172
animation, 172 FiveThirtyEight, 151
comparison strategies, 94 force-directed layout, 98
definition, 5, 42 frequency framing, 150-152
evaluation, 46 fuziness, 148
layout, 82
marks, 4546, 49 generalised linear regression, 92-94
trade-offs, 48, 78, 82, 126, 171 geographically weighted regression,
data-ink ratio, 78 132
ggplot2

203

204

annotations, 177-185

faceting, 5660, 89, 111-113, 117,
160

mapping aes(), 56

scales, 56, 87

gradient bars, 154

Grammar of Graphics, 43, 60
graphical inference, 128, 142, 157
group-level variation, 129

half eye plots, 154
Huffpost, 152
hypothetical outcome plots, 154, 163

icon arrays, 151, 152, 158

Index of Multiple Deprivation, 84-94
information visualization, 45, 148, 165
integrated development environments,

8

interactive data analysis, 60

line-up plots, 128, 142, 157
local authority, 150-157

maps

bezier flowlines, 4, 6, 99

choropleth maps, 62

dot-density maps, 67-70

flowmaps, 99

glyphmaps, 42-43, 47-49, 64-67,
175

gridmaps, 83, 102, 105-117, 174

OD maps, 102-103, 114-117

OS British National Grid, 64,
106

stenomaps, 149

model bias, 128

multilevel modelling, 92-94, 132, 156
multiple comparisons, 155-157
multivariate plots

connected scatterplot, 171

mosaic plots, 80

parallel coordinate plots,
125-126, 134-135

scatterplots, 43, 61-62, 77,
124-125

Index

stacked bars, 78
standardised bars, 79, 151

networks, 97
New York Times, 152
null hypothesis, 128

Open-Innovations Hex3son, 133
origin-destination, 5, 98, 101
origin-destination matrix, 101
outcome variable, 122

packages
broom, 137-145
distributional, 158
dplyr, 2527
fst, 23, 85
gganimate, 158, 164
ggdist, 154, 158

gridmappr, 83, 102, 105*108, 174

here, 23

lubridate, 28

odvis, 107

parlitools, 52, 133

purrr, 137-145, 158

rsample, 143, 158

simple features, 64, 106, 133
stats19, 84

tidymodels, 133, 135146, 158

tidyr, 36-39, 52, 88, 138, 159, 183
parliamentary constituency, 43, 122,

133
partial pooling, 132, 156, 157
Pearson residuals, 80-81, 89-94,
114-117
permutation, 128, 143

Quarto, 8, 12
code blocks, 13
yaml, 12

R

packages, 8, 10
projects, 15
RStudio, 9
scripts, 14

Index

regions, 130-131

regression modelling, 122-145
assumptions, 123, 128-131
coefficients, 130-131
constant term, 129
fixed effect, 129-132, 139-142
interaction term, 130-132
intercept-only model, 122-124
multivariate regression, 126-128

reproducibility, 8

residuals, 123

risk ratios, 155

risk theatre, 152

road crashes, 75-95
injury severity, 85-87, 150-164
who-hit-whom, 76-77, 87-95

salience bias, 100
sampling
non-response, 22
population, 153
representativeness, 22
sample, 21, 85, 153
sampling distribution, 153
target population, 21
sketchiness, 149
social data science, 2
spatial autocorrelation, 128
spatial dependence, 128, 129, 145
spatial nonstationarity, 128, 129, 145
standard error, 153
statistical power, 157
statistical significance, 156
Stevens measurement levels, 20-21
categorical variables, 20
ordinal variables, 21
ratio variables, 21
Swing, 49, 52-56
symbolisation, 48-49, 59

tidy data, 22, 52, 136, 142

UK General Election, 52-70
uncertainty visualization, 147-164
US Census Bureau, 177

US counties, 42

205

US National Weather Service, 149
US presidential election, 42—49, 151

visual channels, 45-46, 49, 148, 171,
174

visual storytelling, 7, 168-170

visual variables, 148

Washington Post, 42-43, 47-49, 175

z-score transformation, 124, 133-134,
138

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of contents
	Preface
	Structure, content and outcomes
	Audience and assumed background
	Omissions and additions
	Acknowledgments

	1. Introduction
	1.1 Introduction
	1.2. Concepts
	1.2.1. Why visualization?
	1.2.2. What type of visualization?
	1.2.3. How we do visualization design and analysis

	1.3. Techniques
	1.3.1. R and RStudio
	1.3.2. Compute in the console
	1.3.3. Install some packages
	1.3.4. Experiment with Quarto
	1.3.5. R Scripts
	1.3.6. Create an RStudio Project

	1.4. Conclusions
	1.5. Further Reading

	2. Data Fundamentals
	2.1. Introduction
	2.2. Concepts
	2.2.1. Data frames
	2.2.2. Types of variable
	2.2.3. Types of observation
	2.2.4. Tidy data

	2.3. Techniques
	2.3.1. Import
	2.3.2. Manipulate
	2.3.3. Tidy

	2.4. Conclusions
	2.5. Further Reading

	3. Visualization Fundamentals
	3.1. Introduction
	3.2. Concepts
	3.2.1. Effective data graphics
	3.2.2. Grammar of Graphics
	3.2.3. Marks and visual channels
	3.2.4. Evaluating designs
	3.2.5. Symbolisation
	3.2.6. Colour

	3.3. Techniques
	3.3.1. Import
	3.3.2. Summarise
	3.3.3. Plot distributions
	3.3.4. Plot ranks/magnitudes
	3.3.5. Plot relationships
	3.3.6. Plot geography

	3.4. Conclusions
	3.5. Further Reading

	4. Exploratory Data Analysis
	4.1. Introduction
	4.2. Concepts
	4.2.1. Exploratory data analysis and statistical graphics
	4.2.2. Plots for continuous variables
	4.2.3. Plots for categorical variables
	4.2.4. Strategies for supporting comparison

	4.3. Techniques
	4.3.1. Import
	4.3.2. Sample
	4.3.3. Abstract and relate
	4.3.4. Model and residual: Pass 1
	4.3.5. Model and residual: Pass 2

	4.4. Conclusions
	4.5. Further Reading

	5. Geographic Networks
	5.1. Introduction
	5.2. Concepts
	5.2.1. Node summary
	5.2.2. Node-link representations
	5.2.3. Origin-Destination matrices
	5.2.4. Origin-Destination maps

	5.3. Techniques
	5.3.1. Import
	5.3.2. Gridmap layout
	5.3.3. Analysing over nodes
	5.3.4. Analysing over edges

	5.4. Conclusions
	5.5. Further Reading

	6. Models
	6.1. Introduction
	6.2. Concepts
	6.2.1. Quantifying and exploring variation
	6.2.2. Quantifying and exploring co-variation
	6.2.3. Modelling for co-variation
	6.2.4. Evaluating model bias
	6.2.5. Geographic context as grouped nuisance term
	6.2.6. Geographic context as grouped effects
	6.2.7. Estimate volatility and alternative modelling approaches

	6.3. Techniques
	6.3.1. Import, transform, explore
	6.3.2. Model tidily
	6.3.3. Plot models tidily
	6.3.4. Extend model terms
	6.3.5. Evaluate models with lineups

	6.4. Conclusion
	6.5. Further Reading

	7. Uncertainty
	7.1. Introduction
	7.2. Concepts
	7.2.1. Uncertainty visualization
	7.2.2. Frequency framing
	7.2.3. Quantifying uncertainty in frequencies
	7.2.4. Visualizing uncertainty in frequencies
	7.2.5. Multiple comparisons

	7.3. Techniques
	7.3.1. Import
	7.3.2. Plot icon arrays
	7.3.3. Generate bootstrap estimates of parameter uncertainty
	7.3.4. Plot parameter estimates with uncertainty information
	7.3.5. Ensemble plots and hypothetical outcome plots

	7.4. Conclusions
	7.5. Further Reading

	8 Visual Storytelling
	8.1. Introduction
	8.2. Concepts
	8.2.1. Data-driven storytelling
	8.2.2. Designed and partial
	8.2.3. Intuitive and compelling
	8.2.4. Political

	8.3. Techniques
	8.3.1. Import
	8.3.2. Plot trajectories
	8.3.3. Add labels and annotations
	8.3.4. Build custom legend
	8.3.5. Compose graphic

	8.4. Conclusions
	8.5. Further Reading

	A. Task Answers
	A.1. From Chapter 2
	Task 1
	Task 2

	A.2. From Chapter 3
	Task 1
	Task 2
	Task 3

	A.3. From Chapter 4
	Task 1
	Task 2

	A.4. From Chapter 5
	Task 1

	A.5. From Chapter 6

	References
	Index

